УДК 533.9 ФИЗИКА

Ю, К. АЛЕХИН, Н. Д. БОРИСОВ, В. И. КАРПМАН

О ПОТЕНЦИАЛЬНЫХ КОЛЕБАНИЯХ С ЧАСТОТАМИ, ПРЕВЫШАЮЩИМИ ГИРОЧАСТОТУ, В ПЛАЗМЕ с конусом потерь

(Представлено академиком Р. З. Сагдеевым 29 IX 1972)

В последнее время появились сообщения о наблюдении потенциальных колебаний с частотами, близкими к $(n+1/2)\omega_c$, где ω_c — электронная циклотронная частота, а $n=1,2,\ldots$ Такие колебания были зарегистрированы, например, в экваториальной области земной магнитосферы на расстояниях порядка 6-8 земных радиусов (где $\omega_c < \omega_p$) (1), а также при зондировании ионосферы сверху (2).

теоретических исследованиях (обычно численных) генерация таких волн связывается с наличием конуса потерь (см., например, (3,4)

и приведенную там литературу).

В настоящей работе излагаются результаты аналитического исследования кинетической неустойчивости и условий распространения воли в указанном диапазоне частот при значениях параметра $a \equiv \omega_c / (|k_{\parallel}| u_e) < \infty$ $(u_e - продоль$ ная тепловая скорость электронов). Функция распределения электронов выбирается в виде

$$F_{j}(u,w) = (j!\pi^{3/2}w_e^{2j+2}u_e)^{-1}w^{2j}\exp\left(-\frac{w^2}{w_e^2} - \frac{u^2}{u_e^2}\right)$$
(1)

(ионы предполагаются неподвижными); здесь *w* и *u* — поперечная и продольная скорости, а j — целое число (при $j \neq 0$ выражение качественно описывает наличие конуса потерь). Найденные ветви колебаний качественно отличаются от изучавшихся в (3, 4) и цитированных там работах и близки к имеющимся (пока немногочисленным) экспериментальным данным (1), хотя и не совпадают

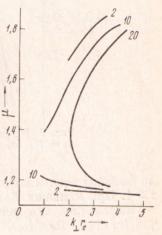


Рис. 1. Дисперсионные кривые $k_{\perp}r_{e}(\mu)$ при $j=3, a=10, A_{j}=11, 51, 101. Цифры у кривых — значение отношения <math>w_{e}^{2}/u_{e}^{2}$

Будем исходить из обычного дисперсионного уравнения для потенциальных колебанией (см., например, (5), формула (2.7)). Вводя обозначения

$$z = \frac{k_{\perp}^2 w_e^2}{2\omega_c^2}, \quad \mu = \text{Re} \frac{\omega}{\omega_c}, \quad a = \left| \frac{\omega_c}{k_{\parallel} u_e} \right|$$
 (2)

и предполагая, что

точно с последними.

$$(\omega_p / \omega_c)^2 \gg 1, \quad z \gg 1, \quad a^2 (\mu - n)^2 \gg 1$$
 (3)

(случай $z \leq 1$ и $a^2(\mu - n)^2 \leq 1$ требует численных расчетов и будет рассмотрен в другом сообщении), получаем решение действительной части дисперсионного уравнения в виде

$$(k_{\perp}r_e)^3 = -\sqrt{\pi} \frac{\omega_p^2}{\omega_e^2} \sin^2\theta \frac{2\alpha_j}{2j-1} \left(\mu \cot \mu \pi + \frac{\pi^2 \mu \cot \mu \pi - \pi A_j}{2a^2 \sin^2\mu \pi}\right), \quad (4)$$

гле

$$\log \theta = rac{k_{\perp}}{k_{\parallel}}, \quad r_e = rac{w_e}{\omega_c}, \quad \alpha_j = rac{(2j-1)\,!!}{2^jj\,!}, \quad A_j = 1 + (2j-1)\,rac{w_e^2}{u_e^2}\,.$$

Положим теперь $\mu=m+\delta$, где m- произвольное целое число и $0<\delta<1$. График зависимости (4) приводится на рис. 1. Из него видно, что (4), вообще говоря, определяет две ветви колебаний. Для одной из них $\delta\to 1$ при $z\to\infty$, другая ветвь начинается при $\delta<1/2$. При достаточ-

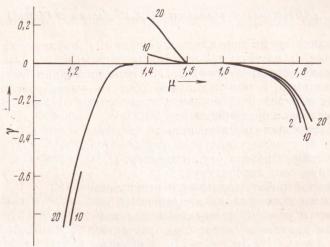


Рис. 2. Мнимая часть частоты $\gamma(\mu)$ при $j=3,\ a=10,\ A_j=11,\ 51,\ 101.$ По оси ординат отложены величины $\gamma\cdot 10^4\ (\gamma>0)$ и $\gamma\cdot 10\ (\gamma<0)$

но больших значениях A_i эти ветви смыкаются в рассматриваемой области $z \gg 1$. При меньших A_i это смыкание может произойти при $z \leqslant 1$.

Выражение для инкремента имеет вид (при тех же условиях (3)) $\gamma = \text{Im } \epsilon(\omega) / \text{Re } \epsilon'(\omega)$,

$$\gamma = -\omega_{c} \frac{a}{\sqrt{\pi}} \sum_{n=-\infty}^{\infty} [A_{j}(\mu - n) - \mu] \exp [-a^{2}(\mu - n)^{2}] \times \left\{ \operatorname{ctg} \pi \mu \left[1 + \frac{\pi^{2}}{2a^{2}} \frac{1 + 2A_{j}}{\sin^{2}\mu\pi} \right] - \frac{\pi\mu}{\sin^{2}\mu\pi} \left[1 + \frac{\pi^{2}}{2a^{2}} (1 + 3\operatorname{ctg}^{2}\pi\mu) \right] \right\}^{-1}.$$
 (5)

Нетрудно убедиться, что выражение в фигурных скобках в (5) всегда отрицательно при $\delta > 1/2$. Что касается суммы по n, то при достаточно больших a главными в ней являются два члена с номерами $n=m,\ m+1$ ($m=\mu-\delta$). Удерживая только эти члены, получаем условие положительности суммы в следующем виде

$$\frac{(A_j - 1)\delta - m}{(A_j - 1)(1 - \delta) + m + 1} > \exp\left[a^2(2\delta - 1)\right]. \tag{6}$$

Нетрудно убедиться, что это неравенство может выполняться только при условии

$$\frac{m}{A_i - 1} < \delta < \frac{1}{2} - \varepsilon, \tag{7}$$

где $\varepsilon \sim 1/a^2$. Таким образом, колебания с большими z устойчивы в области $\delta > 1/2$. Неустойчивость при $z \gg 1$ может появиться при достаточно больших A_j в области $\delta < 1/2$ (см. рис. 2).

Следует отметить, что в окрестности точки смыкания ветвей формула (5) неприменима, так как в этой точке $\varepsilon'(\mu) \equiv \partial \varepsilon / \partial \mu = 0$ (где $\varepsilon(\mu, z, a)$ — продольная диэлектрическая проницаемость). Проводя элементарный анализ, нетрудно убедиться, что от точки смыкания отходит дополнительная ветвь неустойчивых колебаний «нерезонансной» природы (т. е. не связанная с полувычетами в выражении для ε).

Заметим, наконец, что, как показывают численные расчеты для почти перпендикулярного распространения, в области $z \le 1$ появляются неустойчивости и при $\delta > 1/2$. Подробное исследование этих неустойчивостей (резонансной и нерезонансной природы) и сравнение их инкрементов с

найденными выше будет приведено отдельно.

Авторы пользуются возможностью поблагодарить Н. А. Рябову за проведение численных расчетов.

Институт земного магнетизма, ионосферы и распространения радиоволн Академии наук СССР Акалемгоролок Попольского р-на Московской обл.

Поступило 27 IX 1972

цитированная литература

¹ C. F. Kennel, F. L. Scarf et al., J. Geophys. Res., 75, 6436 (1970). ² H. Oy ², J. Geophys. Res., 75, 4279 (1970). ³ R. A. Dory, G. E. Guest, E. G. Harris, Phys. Rev. Lett., 14, 131 (1965). ⁴ R. W. Fredricks, J. Geophys. Res., 76, 5344 (1971). ⁵ D. E. Baldwin, I. B. Bernstein, M. P. Weenink, In: Advances in Plasma Physics, 3, part 1, N. Y., 1969.