УДК 543.862:543.42:541.572

ФИЗИЧЕСКАЯ ХИМИЯ

Т. Н. МАЦКЕВИЧ, А. В. ЛЕЩЕНКО, В. В. ПРЕЖДО, Е. П. ТРАИЛИНА, академик В. И. СПИЦЫН

ДИПОЛЬНЫЕ МОМЕНТЫ АРОМАТИЧЕСКИХ ШИФФОВЫХ ОСНОВАНИЙ

В продолжение работ (1-3) по изучению физико-химических свойств ароматических шиффовых оспований в настоящем сообщении приведены результаты измерения дипольных моментов, а также у.-ф. спектров и спектров люминесценций для некоторых из них:

Так как большинство исследуемых соединений (I-X) практически нерастворимы в неполярных растворителях, дипольные моменты были измерены в диоксане при 25° С. Следует отметить, что сравнение величин дипольных моментов n-бромбензаль-o-аминофенола (I) в бензоле 2,39-2,42 D (*) и в диоксане (табл. 1, 2,34 D) позволяет предполагать, что для изучаемых соединений (I-X) диоксановый эффект относительно невелик и, следовательно, не будет вносить существенных погренностей при сравнительной оценке измеренных для них дипольных моментов и рассчитанных по аддитивной векторной схеме (*). В табл. 1, наряду с опытными величинами дипольных моментов, приведены также и рассчитанные для наиболее вероятных углов поворота между альдегидными и аминными ядрами молекул. Анализ этих данных приводит к выводу о заметном влиянии альдегидного фрагмента на копланарность, а следовательно, и на полярность молекул изучаемых соединений в целом. Так, для

соединения II расчет показывает, что угол поворота аминного ядра близок к 90°, в то время как в соединении IV, производного нафтальдегида, он составляет 30°. Следовательно, усложнение альдегидного компонента соединения IV ведет к уменьшению степени акопланарности и повыше-

нию его полярности.

Выводы, полученные на основе данных о дипольных моментах, согласуются с результатами у.-ф. спектров и спектров люминесценции о влиянии степени акопланарности на интенсивность и положение максимумов поглощения (6-9). Действительно, максимум поглощения, обусловленный электронными переходами по всей молекуле в целом (К-полоса), у соединения IV значительно смещен в длинноволновую область по сравнению с соединением II, что связано с уменьшением угла поворота аминного ядра, вызванное, по-видимому, ослаблением сопряжения азометинового дублета с этим ядром. Такая же тенденция наблюдается и для максимумов люминесценции (см. табл. 1).

Таблица 1 Дипольные моменты в диоксане при 25° С

Соедине- ния	μ _{οπ} , D	μ _{расч} D *	дтах люминеспен- ции, мр	λ _{max} у,-ф. спект- ров, мμ
I III IV V VI VII VIII IX X	2,34 4,78 3,19 6,11 5,56 5,17 2,62 3,81 3,24 4,90	2,32 (30) 4,77 (90) ————————————————————————————————————	150 550—575 560 — — 574 560—530 606	270, 355 270, 360 280, 330, 345 270, 330, 395 270, 320, 410 270, 320, 410 270, 320, 380, 440 270, 375 270, 320 270, 320 270, 325, 420

^{*} В скобках приведены наиболее вероятные величины углов (в градусах) поворота между аминными в альдегидными фрагментами молекул.

К аналогичному выводу приводит и сопоставление $\mu_{\text{оп}}$ и $\mu_{\text{расч}}$ для бисазометинов (VIII – X). Если у дисалицилаль-п-фенилендиамина (VIII) угол поворота одной альдегидной части молекулы по отношению к другой составляет 60°, то для 1-окси-2-нафтальдегидного производного (X) предпочтительной оказывается плоская конфигурация. Учитывая, что в такого рода молекулах наряду с сопряжениями между аминной и альдегидной частями молекул возможны также взаимодействия между азометиповыми группами через систему сопряженных связей, то, следовательно, суммарный эффект сопряжения при увеличении числа конденсированных ядер в альдегидном фрагменте благоприятствует упрощению молекулы. При этом как в у.-ф. спектрах поглощения, так и в спектрах люминесценции максимумы поглощения симбатно капланарности молекулы сдвинуты в длинноволновую область. Замена в молекуле VIII фениленового ядра на группу -CH₂-CH₂-(IX), сопровождающаяся разрывом цепи сопряжения, создает возможность внутреннего вращения вокруг связи С-С. Однако, учитывая влияние пространственных факторов, следует ожидать наиболее выгодной в эпергетическом отношении конфигурации с поворотом одной из альдегидных частей молекул на 90°, что и подтверждается как величиной дипольного момента, так и гипсохромным смещением максимумов у.-ф. поглощения и люминесценции.

Оценить пространственное строение молекул соединений II, V, VI из величин дипольных моментов пе представляется возможным, так как в

(5) нет надежных данных о групповом моменте для карбоксильной груп пы в ароматических соединениях. И хотя у.-ф. спектры соединений V—V по своему характеру идентичны, что, видимо, связано с одинаковой дли пой цепи сопряжения, все же различное положение окси-группы в альде гидиом ядре приводит к некоторому различию полярности их молекул.

Таким образом, данные, полученные для соединений I—X как по ди польным моментам, так и по у.-ф. спектрам и спектрам люминесценции позволяют сделать пекоторые предположения о возможном пространствен-

ном строещии их молекул.

Азомстипы (I—X) синтезированы по методике, описанной в (¹). Дипольные моменты определяли по методу Дебая в неводных растворителях (⁵). Диэлектрическую проницаемость измеряли на установке «Диполь» ДП-1 ОКБА. Атомную поляризацию принимали равной 10% от электронной. Поляризацию при бескопечном разбавлении находили по экстраполяционной формуле Гедестранда (¹⁰). Методика снятия спектров люминесценции описана нами ранее (³). У.-ф. спектры снимались на спектрофотометре СФД-2.

Ворошиловградский машиностроительный институт Харьковский политехнический институт Московский государственный университет им. М. В. Ломоносова Поступило 27 XI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Т. Н. Мацкевич, Е. П. Траилина, И. В. Савич, Вестн. Московск. унив., химия, № 3, 52 (1968); № 3, 333 (1970). ² Т. Н. Мацкевич, Е. П. Траилина и др., ДАН, 190, № 4, 404 (1970). ³ Т. Н. Мацкевич, Л. А. Шантер и др., ДАН, 205, № 3, 593 (1972). ⁴ О. А. Осипов, В. И. Минкип, А. Д. Гарновский. Справочник по дипольным моментам, М., 1965. ⁵ В. И. Минкии, О. А. Осипов, Ю. А. Жданов, Дипольные моменты в органической химии, Л., 1968. ⁶ Б. М. Красовицкий, Б. М. Болотин, Р. Н. Нурмухамедов, ЖОХ, 34, 11, 3784 (1964). ⁷ Б. М. Красовицкий, И. Ф. Левченко и др. Сборн. Азометины, 1967, стр. 21. ⁸ Р. Вгоскіе hurst, Tetrahedron, 18, 299 (1962). ⁹ Е. А. Вгаи de, F. Son dheimer, J. Chem. Soc., 1955, 3754. ¹⁰ G. Gedestrand, Zs. phys. Chem., 132, 428 (1929).