УДК 519.251.5

MATEMATUKA

ю. к. беляев, л. в. рыкова

НЕПАРАМЕТРИЧЕСКИЙ КРИТЕРИЙ КОЛМОГОРОВА ДЛЯ ВЫБОРОК ИЗ КОНЕЧНЫХ СОВОКУПНОСТЕЙ

(Представлено академиком А. Н. Колмогоровым 9 Х 1972)

Представляет определенный интерес получение аналога непараметрического критерия А. Н. Колмогорова (1-3) для случая выборочного обследования конечных совокупностей в условиях, когда не предполагается взаимная независимость последовательности наблюдаемых значений, а объектом исследования является эмпирическая функция распределения (э.ф.р.) ко-

нечной совокупности.

Пусть $\mathfrak{P}-$ конечная совокупность объектов O_i , $i=1,\ldots,N$. Каждому объекту O_i сопоставляется скалярная величина X_i . Предполагается, что $X_i \neq X_j$, $i \neq j$, i, $j=1,\ldots,N$. Совокупность \mathfrak{P} характеризуется э.ф.р. $F_N(x) = l/N$, где l—число $X_i \leq x$. При случайной выборке объема n без возвращения из \mathfrak{P} последовательно отбираются n объектов. При отборе (k+1)-го объекта каждый из (N-k) необследованных объектов может быть отобран с вероятностью $(N-k)^{-1}$. Если i_1,\ldots,i_n —номера объектов, понавших в выборку, то наблюдаемые значения величин $x_k = X_{ik}$, $k = 1,\ldots,n$. Результатам выборки сопоставим э.ф.р $F_n(x) = k/n$, где k—число $x_i \leq x$. Ниже будет показано, что при $N \to \infty$, $n \to \infty$, $v = n/N \to v_0$, $0 \leq v_0 < 1$,

$$\mathbf{P}\left\{ \max_{x} \sqrt{\frac{vN}{1-v}} \left| F_{n}(x) - F_{N}(x) \right| < y \right\} \to K(y) = \sum_{k} (-1)^{k} e^{-2k^{2}y}; \quad (1)$$

здесь P соответствует процедуре случайной выборки без возвращения. Исследуем вероятностные свойства случайной величины

$$\rho_{\nu,N} = \max_{x} |F_n(x) - F_N(x)|. \tag{2}$$

Пусть $X_{(1)} < \ldots < X_{(N)}$ — вариационный ряд (3), соответствующий всей совокупности, а $x_{(1)} < \ldots < x_{(n)}$ — вариационный ряд, построенный по результатам выборки. Так как выборка взята из \mathfrak{P} , то $x_{(1)} = X_{(l_1)} < x_2 = X_{(l_2)} < \ldots < x_{(n)} = X_{(l_n)}$, $1 \le l_1 < l_2 < \ldots < l_n = N$.

Введем случайный процесс $\kappa(l)$, $l=1,\ldots,N$, равный числу $x_i \leq X_{(l)}$.

Соотношение $\{x(l) = k\}$ равносильно $\{x_{(k)} \leq X_{(l)} \leq x_{(k+1)}\}$.

T е о р е м а 1. Процесс ж (l), $l=1,\ldots,N$, является цепью Маркова с вероятностями переходов

$$\mathbf{P}\{\varkappa(l+1) = k+1 \,|\, \varkappa(l) = k\} = \frac{n-k}{N-l},
\mathbf{P}\{\varkappa(l+1) = k \,|\, \varkappa(l) = k\} = 1 - \frac{n-k}{N-l}.$$
(3)

Bведенная выше случайная величина

$$\rho_{\nu,N} = \max_{1 \le l \le N} \left| \frac{\varkappa(l)}{n} - \frac{l}{N} \right|. \tag{4}$$

Доказательство (3) основано на совпадении вероятностей отбора в выборку объектов с номерами l_1, \ldots, l_k как членов вариационного ряда

и вероятностей скачков процесса $\varkappa(l)$ в «моменты» l_1,\ldots,l_k .

Таким образом, как и в классическом случае независимых наблюдений, найдена соответствующая статистика (4), распределение которой не зависит от фактических значений X_1, \ldots, X_N . Этот результат позволяет строить как доверительные границы для $F_N(x)$, так и критерии значимости для проверки простых гипотез о виде $F_N(x)$. Имея в виду устойчивость результатов вычислений (4) при больших N и v=n/N= const, целесообразно искать распределение максимума модуля для процесса

$$\beta_{\nu,N}(t) = \sqrt[N]{\frac{\nu N}{1-\nu}} \left[\frac{\kappa(l)}{n} - t \right], \quad t = \frac{l}{N}, \quad l = 1, \dots, N.$$
 (5)

Из (4) и (5) имеем

$$\sqrt{\frac{vN}{1-v}}\rho_{v,N} = \max_{1 \le t \le N} |\beta_{v,N}(t)| = \bar{\beta}_{v,N}. \tag{6}$$

Положим $\bar{\beta}_{\nu, N}(t) = \max_{1 \leq k \leq l} |\beta_{\nu, N}(k/N)|$. Тогда для двумерного марковского процесса $(\beta_{\nu, N}(t), \bar{\beta}_{\nu, N}(t))$ в соответствии с теоремой 1 из (3) нолучим

Следствие 1. Вероятности состояний

$$p_l(b_l, B_l) = \mathbf{P}\left\{\beta_{\mathsf{v}, N}\left(\frac{l}{N}\right) = b_l, \ \bar{\beta}_{\mathsf{v}, N}\left(\frac{l}{N}\right) = B_l\right\}$$

находятся как решение рекуррентных уравнений

$$p_{l+1}(b_{l+1}, B_{l+1}) = p_{l} \left\{ \left(b_{l+1} + \sqrt{\frac{v}{N(1-v)}} \right), B_{l+1} \right\} \times \left\{ 1 - v + \frac{\sqrt{Nv}(1-v)}{N(1-t)} b_{l+1} + v}{N(1-t)} \right\} + p_{l} \left\{ \left(b_{l+1} - \sqrt{\frac{1-v}{Nv}} \right), B_{l+1} \right\} \times \left\{ v + \frac{1-v - \sqrt{Nv}(1-v)}{N(1-t)} b_{l+1} \right\}$$

 $egin{array}{lll} npu & |b_{l+1}| < B_{l+1} \ u \$ аналогичных $npu & |b_{l+1}| = B_{l+1}. \\$ Искомое распределение $ar{eta}_{ ext{\tiny V}, \ N} \$ получается из соотношений

$$\mathbf{P}\{\bar{\beta}_{v,N}=B\}=p_N(0,B).$$

Разработана программа вычисления квантилей $\beta_{v}(v,N)$ распределения $\beta_{v,N}$. Пусть $\{B_{\alpha}\}$ — последовательный набор возможных значений $\overline{\beta}_{v,N}$. $B_{\alpha'} < B_{\alpha}$, $\alpha' < \alpha$. Тогда $\beta_{\tau}(v,N)$ определяется как наименьшее из чисел B_{α} таких, что $\sum_{\alpha' \leqslant \alpha} p_{N}(0,B_{\alpha'}) \geqslant \gamma$. Таким образом, $P\{\overline{\beta}_{v,N} > \beta_{\tau}(v,N)\} \leqslant 1-\gamma$ и, следовательно, с вероятностью, не меньшей γ , э.ф.р. $F_{N}(x)$ заключена между $F_{\tau}(x,x)$ и $\overline{F}_{\tau}(x,x)$, где

$$\underline{F}_{\nu}(x, \mathbf{x}) = F_{n}(x) - \beta_{\nu}(\nu, N) \sqrt{\frac{1 - \nu}{N\nu}}.$$

$$\overline{F}_{\nu}(x, \mathbf{x}) = F_{n}(x) + \beta_{\nu}(\nu, N) \sqrt{\frac{1 - \nu}{N\nu}}.$$

Аналогично получаются односторонние верхние и нижние границы, для чего находится распределение максимума и минимума процесса $\beta_{v,N}(t)$.

Заметим, что доверительные границы строятся для $\bar{F}_N(x)$ и скачки $F_n(x)$ принадлежат множеству скачков $F_N(x)$. Поэтому получаемые доверительные границы будут уже границ, найденных в предположении независимости наблюдений и существовании непрерывной ф.р. (3). Например, при $N=50,\ n=3$ критические значения для квантилей $\gamma_1=0,1$ и $\gamma_2=0,01$ равны $\beta_{0,\ 1}=1,090$ и $\beta_{0,01}=1,411$, тогда как по таблице 6.2 (3) $\beta_{0,1}'=1,136$ и $\beta_{0,01}=1,481$.

Пусть $\beta(t)$ — стандартный винеровский процесс, $\mathbf{E}\beta(t) = 0$, $\mathbf{E}\beta^2(t) = t$, а $\beta_0(t)$ — условный винеровский процесс при условии $\beta(0) = \beta(1) = 0$.

Теорема 2. При $N \to \infty$, $n \to \infty$, $v = n/N \to v_0 < 1$ распределение $\bar{\beta}_{v,N}$ сходится к распределению $\bar{\beta}_0 = \max_{0 \leqslant t \leqslant 1} |\beta_0(t)|$, τ . е. справедливо соотноше-

ние (1).

Доказательство состоит из двух частей. Сначала для любого целого r и чисел $0 < t_1 < \ldots < t_r < 1$ находим, что совместное распределение $\beta_{v,N}(l_i/N)$ при $N \to \infty$, $v \to v_0 < 1$, $l_i/N \to t_i$ является гауссовским и совпадает с $\beta_0(t_i)$, $i=1,\ldots,r$. Для этого используем локальную предельную теорему для гипергеометрического распределения, см. (5), стр. 197. Затем показываем, что для любых $\varepsilon > 0$, $\delta > 0$, и r > 0 и всех достаточно больших N

$$\mathbf{P}\left\{-u+\varepsilon\leqslant\beta_{n,N}\left(\frac{l_i}{N}\right)\leqslant u-\varepsilon,\max_{\substack{l_i\leqslant l\leqslant l_{i+1}}}\left|\beta_{n,N}\left(\frac{l}{N}\right)\right|>u\right\}\leqslant\frac{\delta}{r+1}.$$
 (7)

Неравенство (7) получаем заменой на интервалах (l_i, l_{i+1}) процесса $\varkappa(l)$ с однородными блужданиями, мажорирующими вероятности выхода за верхнюю и нижнюю границы. После вычитания систематических составляющих используем обобщенное неравенство Колмогорова, см. (6), стр. 277.

Заметим, что для конечных совокупностей возможны различные аналоги критериев Колмогорова — Смирнова (3). Критерий строится аналогичным образом, если конечная совокупность $\mathfrak{P}_{N_1+N_2}$ путем случайного отбора разбивается на две \mathfrak{P}_{N_1} и \mathfrak{P}_{N_2} , а затем на основе выборок без возвращения объемов n_1 и n_2 из \mathfrak{P}_{N_1} и \mathfrak{P}_{N_2} определяются отклонения в эмпириче-

ских функциях.

Предложенный подход можно обобщить на выборки из многомерных конечных совокупностей. Для простоты ограничимся случайной выборкой без возвращения из конечной совокупности $\mathfrak{P}_N = \{(X_1, Y_1), \ldots, (X_N, Y_N)\}$, в которой каждый объект O_i характеризуется вектором (X_i, Y_i) . Вводя вариационные ряды $\{X_{(l_i)}\}$, $\{Y_{(l_2)}\}$, $l_i=1,\ldots,N$, i=1,2, независимо по каждой из координат X и Y, получаем отображение \mathfrak{P}_N в \mathfrak{R}_N — подмножество точек квадратной решетки $K_N = \{(i,j): i,j=1,\ldots,N\}$. $\mathfrak{R}_N = \{(l_1,l_2)\}$ определяется наборами значений l_1,l_2 пар $(X_{(l_1)},Y_{(l_2)}) \in \mathfrak{P}_N$. Соответственно через $\mathfrak{R}_{n,N} = \{(i,j)\}$ обозначаем множество пар (i,j) значений $(X_{(i)},Y_{(i)})$ характеристик объектов O_i , попавших в выборку. Число различных $\mathfrak{R}_{n,N} \subset \mathfrak{R}_N$ равно $\binom{N}{n}$, все они равновероятны. Каждому $\mathfrak{R}_{n,N}$ сопоставляем

$$\rho_{n, N}^{(2)} = \max_{(l_1, l_2) \in \Re_N} \left| \frac{\kappa(l_1, l_2)}{n} - \frac{K(l_1, l_2)}{N} \right|, \tag{8}$$

где $\varkappa(l_1, l_2)$ $(K(l_1, l_2))$ равно числу $O_i \in \Re_{n, N}$ $(O_i \in \Re_N)$, у которых $X_i \leq X_{(l_1)}, Y_i \leq Y_{(l_2)}$.

Таким образом, каждому значению $\rho_{n,m}^{(2)} = \rho$ сопоставляется вероятность $m(\rho)$, равная отношению числа наборов $\Re_{n,N}$, для которых $\rho_{n,N}^{(2)} = \rho$, деленному на $\binom{N}{n}$.

Пусть $\rho_{\nu}(\Re_{n,N})$ — квантиль уровня γ , а $\rho_{\nu}(n,N) = \max_{\Re_{n,N} \subset \Re_{N}} \rho_{\nu}(\Re_{n,N})$. Тогда γ — доверительные границы для $F_{N}(X,Y) = k/N$, где k — число O_{l} , для которых $X_{l} \leq X$, $Y_{l} \leq Y$, задаются неравенствами

$$\varkappa(X, Y) / n - \rho_{\gamma}(n, N) \leq F_{N}(X, Y) \leq \varkappa(X, Y) / n + \rho_{\gamma}(n, N). \tag{9}$$

В (9) $\varkappa(X, Y)$ равно числу объектов O_i в выборке, у которых $X_i \leq X$, $Y_i \leq Y$.

Московский государственный университет им. М. В. Ломоносова

Поступило 18 IX 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. N. Kolmogorov, Giorn. dill Inst. Ital. degli Attuari, 4, 83 (1933). ² A. N. Kolmogorov, Ann. Math. Statist., 12, 461 (1941). ³ Л. Н. Большев, Н. В. Смирнов, Таблицы математической статистики, «Наука», 1968. ⁴ И. И. Гихман, А. В. Скороход, Введение в теорию случайных процессов, «Наука», 1965. ⁵ В. Феллер, Введение в теорию вероятностей и ее приложения, 1, М., 1967. ⁶ М. Лоэв, Теория вероятностей, ИЛ, 1962.