УДК 513.77+519.46

MATEMATUKA

Б. А. РОЗЕНФЕЛЬД

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ КВАЗИПРОСТЫХ ОСОБЫХ ГРУПП ЛИ КЛАССОВ E_7 И E_8

(Представлено академиком И.Г. Петровским З XI 1972)

В 1956 г. нами (1) была высказана гипотеза о том, что компактные простые группы Π_{1} классов E_{7} и E_{8} могут быть интерпретированы как группы движений эрмптовых эллиптических плоскостей $S_2(i, j, l, I, J)$ и $S_2(i, j, l, I, I, L)$ над алгебрами кватероктав и октооктав — тензорным произведением R(i, j, l, I, J) альтернативного тела октав R(i, j, l) и тела кватернионов $\mathbf{R}(i, j)$ и тензорным произведением $\mathbf{R}(i, j, l, I, J, L)$ двух тел $\mathbf{R}(i, j, l)$. Эта гипотеза является естественным продолжением хорошо известных интерпретаций компактных простых групп Ли классов A_n , B_n , $C_n,\,D_n,\,F_4$ и E_6 в виде соответственно групп движений комплексиого эрмитова эллиптического пространства $\overline{S}_n(i)$, вещественного эллиптического пространства S_{2n} , кватерипонного эрмптова эллиптического пространства $\overline{S}_{n-1}(i,j)$, вещественного эллиптического пространства S_{2n-1} , октавной эрмитовой эллинтической плоскости $\overline{S}_2(i,j,l)$ и эрмитовой эллиптической плоскости $S_2(i, j, l, I)$ над алгеброй биоктав — тензорным произведением поля $C = \mathbf{R}(i)$ и тела $\mathbf{R}(i,j)$ ((2), стр. 151, 622, 683 и 684). Заметим также, что компактная группа G_2 является группой автоморфизмов тела $\mathbf{R}(i,j,l)$, а группы движений эрмитовых эллиптических пространств $S_n(i, I), S_n(i, j, I)$ и $S_w(i, j, I, J)$ над алгебрами бикомплексных чисел, бикватернионов и кватеркватернионов — теизорным произведением $\mathrm{R}(i,\,I)$ двух полей $\mathbf{R}(i)$, тензорным произведением $\mathbf{R}(i,j,I)$ поля $\mathbf{R}(i)$ и тела $\mathbf{R}(i,j)$ и тензорным произведением $\mathbf{R}(i,j,I,J)$ двух тел $\mathbf{R}(i,j)$ — изоморфны соответственио прямому произведению двух компактных групп A_n и компактным группам A_{2n+1} и D_{2n+2} , причем точки этих пространств изображаются соответственно парами точек двух пространств $\overline{S}_n(i)$, прямыми пространства $\overline{S}_{2n+1}(i)$ и 3-илоскостями пространства S_{4n+3} (3-5).

Э. Картан еще в 1927 г. ((6), стр. 945) показал, что компактные группы E_7 п E_8 являются группами движений симметрических римановых пространств V_{64} и V_{128} , стационарными группами движений которых являются соответственно прямое произведение компактных групп D_6 и B_4 и компактная группа D_8 , однако до сих пор не удалось доказать, что эти симметрические пространства обладают кватероктавной и октооктавной структурами и совпадают с плоскостями $\overline{\widetilde{S}}_2(i,j,l,I,J)$ и $\overline{\widetilde{S}}_2(i,j,l,I,J)$ и не

удалось корректно определить группы движений этих плоскостей.

В настоящей замене аналогичная задача решается для квазипростых групп Ли классов E_7 и E_8 . Как известно, всякому симметрическому риманову пространству с компактной простой группой движений соответствует некомпактная группа («двойственная по Картану») и получающаяся предельными переходами из обеих этих групп квазипростая группа («тройственная по Картану»), являющаяся группой движений симметрического риманова пространства нулевой кривизны той же размерности и с той же стационарной подгруппой, что и исходное симметрическое

пространство ((7), стр. 448, 467). Перечисленным эллиптическим в эрмитовым эллиптическим пространствам и плоскостям соответствуют квазипростые группы движений эвклидовых пространств R_{2n} и R_{2n-1} и эрмитовых эвклидовых пространств и плоскостей $\overline{R}_n(i)$, $\overline{R}_n(i,j)$, $\overline{R}_2(i,j,l)$, $\overline{R}_n(i,j)$, $\overline{R}_n(i,j,l)$, $\overline{R}_n(i,j,$

Определим эрмитову эвклидову плоскость $\overline{R}_2(i,\ldots,I,\ldots)$ над pq-мерным тензорным произведением $R(i,\ldots,I,\ldots)$ p-мерного тела $R(i,\ldots)$ и q-мерного тела $R(I,\ldots)$, p, q=1, 2, 4, 8, как множество пар элементов x^1 , x^2 этих алгебр, которые мы будем рассматривать также как векторы $x=\{x^1, x^2\}$. В этих плоскостях вводится скалярное произведение $(x,y)=\overline{x^1}y^1+\overline{x^2}y^2$. Вещественная часть Re(x,x) скалярного квадрата (x,x) равна сумме 2pq квадратов вещественных координат элементов x^1 и x^2 , поэтому, если считать за расстояние между точками (x^1,x^2) и (y^1,y^2) неотрицательный квадратный корень из выражения Re(y-x,y-x), то мы введем в плоскость $\overline{R}_2(i,\ldots,I,\ldots)$ метрику эвклидова пространства R_2 ...

Прямые плоскости $R_2(i,\ldots,I,\ldots)$ определяются уравнениями $x^2=ax^4+b$, $x^4=a$. В метрике пространства R_{2pq} эти прямые изометричны пространствам R_{pq} . Будем называть движениями плоскости $\widetilde{R}_2(i,\ldots,I,\ldots)$ движения пространства R_{2pq} , переводящие систему pq-плоскостей, изображающих прямые плоскости $\widetilde{R}_2(i,\ldots,I,\ldots)$ в себя. Переносы пространства R_{2pq} являются такими движениями и изображаются в плоскости $R_2(i,\ldots,I,\ldots)$ переносами $x^2=x^2+a^2$. Вращения пространства $x^2=x^2+a^2$ 0 коло начала переводят систему $x^2=x^2+a^2$ 1. Вращения пространства $x^2=x^2+a^2$ 2 когда $x^2=x^2+a^2$ 3 в алгебре (в случае ассоциативных алгебр эти $x^2=x^2+a^2$ 4 в алгебре (в случае ассоциативных алгебр эти $x^2=x^2+a^2$ 5 представления алгебры).

2рд-матрицы такого вида являются матридами линейных преобразовапреобразований $x^i = A_i x^j$ и ний, определяемыми произведениями $x^i = \varphi(x^i)$, где $\varphi(x)$ — непрерывный автоморфизм алгебры. Найдем структуру алгебры Ли группы вращений плоскости $R_2(i, \ldots, I, \ldots)$. Так как алгебра Ли группы вращений пространства R_{2pq} состоит из кососимметрических 2рд-матриц, то указанная алгебра Ли состоит из кососимметрических 2pq-матриц, состоящих из четырех pq-матриц линейных преобразований $'x^i = A_i^i x^j$ в алгебре и элементов алгебры Ли группы автоморфизмов алгебры. Так как pq-матрицы линейных преобразований 'x = ax в алгебре при $a=i,\ldots,I,\ldots$ также кососимметричны, транспонирование этих раматриц соответствует умножению элементов i, \ldots, I, \ldots на -1, т. е. переходу от элемента а к элементу а. Поэтому, для того чтобы 2рд-матрица линейного преобразования, определяемого преобразованием $x^i = A_i x^i$, была кососимметричной, необходимо и достаточно, чтобы матрица (A_i^i) обладала свойством $A_i^i = -\overline{A_i^j}$. На элемент A_2^i матрицы (A_j^i) не наложено никаких условий и множество этих элементов pq-мерно. Элементы A_1 и A_2^2 — линейные комбинации базисных элементов i, \ldots, I, \ldots и не содержат вещественной части и произведений iI,\ldots и размерность каждого из

множеств этих элементов равна p + q - 2.

Группы непрерывных автоморфизмов полей ${\bf R}$ и ${\bf R}(i)$ дискретны, а группы автоморфизмов тел ${\bf R}(i,j)$ и ${\bf R}(i,j,l)$ изоморфны соответственно 3-мерной группе движений плоскости S_2 и 14-мерной компактной группе G_2 , т. е., если мы обозначим размерность группы автоморфизмов p-мерной алгебры ${\bf R}(i,\ldots)$ через a(p), то a(1)=a(2)=0, a(4)=3, a(8)=14, а алгебра Ли группы автоморфизмов тензорного произведения ${\bf R}(i,\ldots,I,\ldots)$ является прямой суммой алгебр Ли тензорных сомножителей ${\bf R}(i,\ldots)$ и ${\bf R}(I,\ldots)$ и ее размерность равна a(p)+a(q). Поэтому размерность группы вращений плоскости $\overline{R}_2(i,\ldots,I,\ldots)$ равна pq+2(p+q-2)+a(p)+a(q). Так как размерность группы переносов плоскости $\overline{R}_2(i,\ldots,I,\ldots)$ равна размерность всей группы движений плоскости $\overline{R}_2(i,\ldots,I,\ldots)$ равна 3pq+2(p+q-2)+a(p)+a(q).

С другой стороны, прямые, выходящие из точки (0,0) плоскости $\overline{R}_2(i,\ldots,I,\ldots)$, находятся во взаимно однозначном соответствии с точками эрмитовой эллинтической прямой $\overline{S}_i(i,\ldots,I,\ldots)$ над той же алгеброй и при вращениях плоскости производят движения этой прямой.

Можно показать, что пары полярно сопряженных точек прямых $\widetilde{S}_1(i,\ldots,I,\ldots)$, т. е. точек этих прямых, соответствующих векторам x и y плоскости $\widetilde{R}_2(i,\ldots,I,\ldots)$, для которых (x,y)=0, изображаются парами взаимно полярных (p-1)-плоскостей и (q-1)-плоскостей вещественного эллиптического пространства S_{p+q-1} , причем группа движений прямой $\widetilde{S}_1(i,\ldots,I,\ldots)$ изоморфна группе движений пространства S_{p+q-1} , а метрические инварианты двух точек прямой $\widetilde{S}_1(i,\ldots,I,\ldots)$ равны метрическим инвариантам двух соответствующих им (p-1)-плоскостей или их

		Таблица 1		
R_2	S_1	R_2	B_1	
\overline{R}_2 (i)	\overline{S}_1 (i) \times $S_1 = S_2 \times S_1$	R_4	A_2	
\overline{R}_2 (i, j)	$\overline{S}_1(i, j) \times S_2 = S_4 \times S_2$	R_8	C_3	
R_2 (i, j, l)	$\overline{S}_1 (i, j, l) = S_8$	R_{16}	F_4	
$\frac{\widetilde{R}}{R_2}$ (i, I)	\overline{S}_1 $(i, I) \times S_1 \times S_1 = S_3 \times S_1 \times S_1$	R_8	$A_2 \times A_2$	
\overline{R}_2 (i, j, I)	\overline{S}_1 $(i, j, I) \times S_2 \times S_1 = S_5 \times S_2 \times S_1$	R_{16}	A_5	
\overline{R}_2 (i, j, l, I)	\overline{S}_1 $(i, j, l, I) \times S_1 = S_9 \times S_1$	R_{32}	E_6	
	\overline{S}_1 $(i, j, I, J) \times S_2 \times S_2 = S_7 \times S_2 \times S_2$	R_{32}	D_6	
$\widetilde{\overline{R}}_2$ (i, j, l, I, J)	$\overline{\widetilde{S}}_1$ (i, j, l, I, J) \times $S_2 = S_{11} \times S_2$	R_{61}	E_7	
$\widetilde{\overline{R}}_{2}(i, j, l, I, J, L)$	\overline{S}_1 $(i, j, l, I, J, L) = S_{15}$	R_{128}	E_8	

поляр. С другой стороны, можно показать, что группа вращений плоскости $\widetilde{R}_2(i,\ldots,I,\ldots)$ изоморфна прямому произведению группы движений прямой $\widetilde{S}_1(i,\ldots,I,\ldots)$ и групи элементов единичного модуля тензорных сомножителей алгебры.

Размерность группы движений пространства S_{p+q-1} равпа $^{1}\!/_{2}(p+q-1)\,(p+q)$. Группа элементов единичного модуля поля \mathbf{R} дискретна, группа элементов единичного модуля поля $\mathbf{R}(i)$ изоморфна 1-мерной группе движений прямой S_{1} , группа элементов единичного модуля тела $\mathbf{R}(i,j)$ локально изоморфна 3-мерной группе движений плоскости S_{2} , а октавы единичного модуля, в силу неассоциативности их умножения, не образуют группы, т. е. если мы обозначим размерность группы элементов единичного модуля p-мерной алгебры $\mathbf{R}(i,\ldots)$ через e(p), то e(1)=0,

p	q	pq	2(p+q-2)	a(p) + a(q)	$\frac{1}{2}(p+q-1)(p+q)$	e(p) + e(q)	r	t	s
1 2 4 8 2 4 8 4 8 8 8 8 8 8	1 1 1 1 2 2 2 4 4 8	1 2 4 8 4 8 16 16 32 64	2.0 2.1 2.3 2.7 2.2 2.4 2.8 2.6 2.10 2.14	0 0 3 14 0 3 14 3+3 14+3 14+14	1 3 10 36 6 15 45 28 66 120	0 1 3 0 1+1 3+1 1 3+3 0	1 4 13 36 8 19 46 34 69 120	2 4 8 16 8 16 32 32 64 128	3 8 21 52 16 35 78 66 133 248

 $e(2)=1,\ e(4)=3,\ e(8)=0.$ Поэтому размерность группы вращений плоскости $\widetilde{R}_2(i,\ldots,I,\ldots)$ можно представить также в виде $^4/_2(p+q-1)\times (p+q)+e(p)+e(q)$.

Заметим, что стационарные подгруппы симметрических пространств V_{64} и V_{128} Картана, группами движений которых являются компактные группы E_7 и E_8 , изоморфиы соответственно прямому произведению групп движений пространства S_{14} и плоскости S_2 и группе движений пространства S_{15} .

В табл. 1 указаны плоскости $R_2(i,\ldots,I,\ldots)$, их группы вращений (группы указываются обозначениями пространств, группы движений которых изоморфны этим группам), пространства R_{2pq} и классы квазипростых групп Ли, к которым принадлежат группы движений. В табл. 2 указаны соответствующие этим плоскостям числа $p,q,pq,2(p+q-2),a(p)+a(q),\frac{1}{2}(p+q-1)(p+q),e(p)+e(q)$ размерности r групп вращений (равные $pq+2(p+q-2)+a(p)+a(q)=\frac{1}{2}(p+q-1)(p+q)+e(q)+e(q)+e(q))$, размерности t групп переносов (равные 2pq) и размерности s полных групп движений этих плоскостей (равные суммам размерностей двух предыдущих групп).

Институт истории естествознания и техники Академии наук СССР Москва Поступило 28 IX 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. А. Розенфельд, ДАН, 106, № 4 (1956). ² Б. А. Розенфельд, Неевклидовы геометрии, М., 1955. ³ Н. Т. Аббасов, Уч. зап. Азерб. унив., сер. физматем. наук, № 2 (1962). ⁴ Н. Т. Аббасов, там же, № 2 (1963). ⁵ Л. В. Румянцева, там же, № 3 (1963). ⁶ Е. Сагtап, Ocuvres complètes, Part I, 2, Paris, 1952. ⁷ Б. А. Розенфельд, Неевклидовы пространства, М., 1969. ⁸ Б. А. Розенфельд, Л. М. Карпова, Тр. семии. по вект. и тенз. анализу при МГУ, 13 (1966).