УДК 549.623:553.441

МИНЕРАЛОГИЯ

Е. П. ВАЛЬЯШИХИНА, К. Б. КЕПЕЖИНСКАС

НОВЫЕ ДАННЫЕ ПО ТЕРМИЧЕСКОМУ ИЗУЧЕНИЮ ЖЕЛЕЗИСТЫХ ХЛОРИТОВ

(Представлено акдемиком Ф. В. Чухровым 14 IV 1972)

Железистые хлориты являются типоморфными минералами, представляющими значительный научный и практический интерес в связи с широким их распространением в природе как непосредственно в рудных телах сульфидно-касситеритовых, свинцово-цинковых, железорудных и других

типов месторождений, так и во вмещающих рудные тела породах.

Диагностика железистых хлоритов, особенно тонкодисперсных образований, представляет значительную трудность. Термический анализ, позволяющий успешно определять многие тонкодисперсные образования, не был в достаточной мере использован при диагностике сильно железистых хлоритов, так как на их эталонной ДТА-кривой, полученной при нагревании образца на воздухе, фиксируется экзоэффект (340—500°), переходящий непосредственно в эндотермический эффект (450—650°). Такая форма ДТА-кривой не вскрывает структурных особенностей железистых хлоритов и тем самым затрудняет их диагностику.

Проведение термического анализа при нагревании образца в инертной атмосфере (2, 3) исключает процесс окисления закисного железа и позво-

ляет судить об изоморфном замещении Mg - Fe.

При нагревании в инертной атмосфере на ДТА-кривой четко фиксируются: І — сильный эндотермический эффект выделения структурной воды из «бруситоподобного слоя» и ІІ — слабый эндотермический эффект — выделение воды из «слюдоподобного слоя», переходящий непосредственно в

экзотермический эффект фазового превращения.

Настоящая работа посвящена исследованию железистых хлоритов в атмосфере азота с количественной оценкой связи между их составом (коэффициентами кристаллохимической формулы) и термическими данными при помощи корреляционного анализа, подробно изложенного в ряде работ ((5) и др.) и применяемого многими исследователями в области петрографии и минералогии ((4) и др.).

Предварительно все образцы были изучены химически, оптически и

рентгенографически.

В табл. 1 приведены результаты химических анализов 21 образца железистых и 1 магнезиального хлоритов. Значительное содержание закиси железа (41,16—24,07%) указывает на сильно железистый характер хлоритов. Расчет анализов на кристаллохимические формулы по Борнеман-Старынкевич (1) показал, что они хорошо укладываются в структурную формулу триоктаэдрических хлоритов.

Оптические исследования находятся в полном согласии с результатами химических анализов. Все образцы характеризуются высокими показателями преломления, которые изменяются в пределах 1,63-1,67 (N_m') .

Для всех образцов были получены рентгендифрактограммы от ориентированных препаратов на дифрактометре УРС-50И, на которых четко фиксируется комплекс хлоритовых базальтовых отражений. Соотношения интенсивностей $(I_{002}+I_{004})$ / $(I_{001}+I_{003})$, а также величина значений d_{060} подтверждают принадлежность исследуемых хлоритов к сильно железистым триоктаэдрическим разностям.

Исследованные хлориты относятся к следующим генетическим типам (4): 1) сульфидно-касситеритовых месторождений (№№ 9; 10; 14; 16; 17; 21); 2) полиметаллических месторождений (№№ 3; 4; 7; 8; 12); 3) осадочно-железистых месторождений (№№ 11; 15); 4) кварцевых жил (№№ 5; 13; 20); 5) поверхностных гидротермальных месторождений $(N_{!}N_{!} 2; 6; 19).$

Приведенные на рис. 1 ДТА-кривые охарактеризованных выше образцов железистых хлоритов (№№ 1—21) и для сравнения ДТА-кривая маг-

300 500 700 900 °C

незиального хлорита (№ 22) позволяют сделать следующие выводы: а) количество термических эффектов, фиксируемых на ДТА-кривых одинаково (два эндотермических и один экзотермический). Для всех хлоритов характерен сильный эндотермический эффект, связанный с выделением воды из «бруситоподобного слоя» в количествах 7,12-9,90%, и слабый энедотермический эффект, отвечающий выделению воды из «слюдоподобного слоя» в количествах 1,01-2,50%; б) второй эффект переходит непосредственно в четко выраженный экзотермический эффект, отвечающий образованию оливиноподобной структуры (2). Температурное положение максимума экзоэффекта ДТА-кривой находится в обратной прямолипейной зависимости от содержания закиси железа в составе хлорита.

Расчет парных коэффициентов корреляции между коэффициентами кристаллохимической формулы и данными нагревания (табл. 2) показал, что значимыми (с вероятностью > 95%) оказались лишь следующие коэффициенты корреляции: а) между содержанием Fe²⁺ и началом, максимумом и концом первого эндоэффекта (-0.44; -0.66; -0.71); б) между содержанием Fe^{2+} и началом и концом второго эндоэффекта и максимумом экзоэффекта (-0.71; -0.55; -0.62). Близкие по абсолютной величине, но с противоположным знаком величины получены между содержанием Мд и перечисленными данными нагревания. Установлена положительная связь между содержанием Al^{IV} и максимумом экзоэффекта (0,50), а также содержанием ОН-групп и потерей веса, отвечающей второму эндоэффекту (0,46).

Эти результаты указывают на возможность определения содержания Fe2+ железистых хлоритов при помощи термических данных. Несмотря на то, что максимальными по абсолютной величине являются коэффициенты корреляции между содержанием Fe²⁺ и температурой конца первого эндоэффекта, а также началом второго эндоэффекта, для расчета уравнения регрессии использован коэффициент корреляции между содержанием Fe²⁺ и температурой максимума экзоэффекта. Это объясияется тем, что последняя величина наиболее четко и надежно фиксируется на термограммах. Расчетное уравнение имеет вид:

$${
m Fe^{2+}}=15,652-0,017\,(T^0_{
m max\ oks}N)\pm0,31\,$$
форм. ед. (1)

Рис. 1 С целью проверки результатов количественного определения содержания Fe²⁺ в октаэдрических слоях расчетным путем по температурному положению максимума экзоэффекта ДТА-кривой (1), нами дополнительно были изучены шесть образцов железистых хлоритов. Как видно из табл. 3, содержания Fe²⁺, установленные

11

13

18

20

Компонент	1	2	3	4	5	6	7	8	9	10	11
SiO_2 TiO_2 Al_2O_3 Fe_2O_3 FeO MnO MgO CaO Na_2O K_2O H_2O^+ H_2O^-	21,48 0,13 21,07 4,30 41,16 0,19 2,40 0,16 Her 9,17	25,92 0,06 18,00 4,72 36,58 0,08 4,05 Her " " 10,24 0,44	23,60 Cл. 20,22 2,60 36,35 0,37 6,22 0,24 0,04 — 10,84 0,14	26,50 0,13 23,00 40,00 0,52 3,70 0,15 — 9,43	1,68 35,92 0,19 4,62 0,16	0,04 19,28 4,60 35,76 0,08 4,50 Сл Нет	0,23 21,40 5,11 35,06 0,34 5,17 eды 0,06 0,06 11,00	24,29 Her 18,43 1,10 35,03 1,65 6,99 0,23 Her ** 10,18 2,01	23,50 Her 23,60 1,99 35,00 1,12 3,78 0,17 Her ** 10,37 0,23	24,53 0,02 22,30 2,22 34,91 0,69 4,12 Her 0,12	25,70 1,08 17,85 6,25 34,00 0,04 3,78 0.63 Her
Сумма	100,06	100,09	100,62	100,43	100,07	100,14	100,81	99,91	99,76	99,71	100,07
Компонент	12	13	14	15	16	17	18	19	20	21	22
SiO_{2} TiO_{2} $Al_{2}O_{3}$ $Fe_{2}O_{3}$ FeO MnO MgO CaO $Na_{2}O$ $K_{2}O$ $H_{2}O^{+}$ $H_{2}O^{-}$	22,56 Her 21,57 5,01 33,60 2,70 2,17 0,53 Her ** 10,34 1,00	24,69 0,12 21,24 2,11 32,55 3,68 3,49 Her Cn. 3	Нет 0,04 0,12 9,62	24,48 0,10 22,00 1,33 32,14 0,02 9,02 Сл. » 10,87	0,06 22,31 6,68 30,13 1,21 5,50 0,25 Het	HeT 21,00 2,99 29,42 0,29 8,24 HeT " 10,21	Her 18,43 3,22 29,28 1,65	Her 23,16 7,57 28,00 1,00 7,21 Her * * 8,70		27,62 Cn. 25,45 0,65 24,05 1,37 8,49 0,73 0,38 10,46 0,53	Her 18,33 0,47 2,11 Her 36,11 Her "" 12,29
Сумма	99,48	99,24	97,52	99,96	100,13	100,00	100,24	100,07	99,74	99,73	100,27

Примечание. Аналитики: Н. А. Матвеева — $\mathbb{N}\mathbb{N}$ 2; 8; 11; 12; 13; 15; 16; 17; 19; 21; В. А. Молева — \mathbb{N} 6; А. И. Гусева — \mathbb{N} 1; О. П. Острогорская — \mathbb{N} 20; И. К. Кузнецова (Институт геологии и геофизики Сибирского отделения АН СССР) — $\mathbb{N}\mathbb{N}$ 3; 4; 5; 7. Образцы с анализами $\mathbb{N}\mathbb{N}$ 9; 10; 14; 18 были получены от С. В. Козыренко (Институт геохимии и аналитической химии АН СССР), образец с анализом \mathbb{N} 22 — от В. С. Мясникова.

Таблица 3 Сравпительные результаты определения $\mathrm{Fe^{2^+}}$ в октаэдрических слоях железистых хлоритов

№ обр.			+ (форм. ед.). тем расчета			
	T _{max əka} , °C	из термич. данных (1)	из хим. ана- лиза	Аналитик		
63/ 4 E-25—1	732 727	3,21 3,29	3,07 3,54	А.И.Гусева Е.И.Ломейко		
112 ⁶	722	3,38	3,38	Р. Л. Телешева, Н. А. Матвеева		
112/1 313 60	731 720 710	3,23 3,41 3,58	3,20 3,13 3,48	То же Н. А. Матвеева		

Температурное положение термических эффектов и данные изменения веса для железистых хлоридов

№№ п.н.	I эндоэфф е кт			II эндоэффект		т тах экз,	Навес-	Потеря веса. рассчитанная по ТГ-кривой, вес. %		
	нач.	макс.	конец	нач.	конед	°C	ка, мг	низко- темп. вода	I эндо- оффект	II эндо- эффект
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	400 360 428 433 425 400 470 472 442 400 425 447 463 446 472 485 460 460 470 470	540 584 567 570 577 560 571 586 584 590 573 566 576 592 600 590 597 592 600 580 600	600 664 632 645 642 650 658 658 653 635 655 652 660 674 662 666 676 665 672	600 664 632 645 642 650 658 658 653 655 655 652 666 666 676 665 672	736 739 751 754 774 735 764 800 772 780 721 751 758 800 786 800 772 768 800 772 800 786 800 772 800 786 800 800 772 800 800 800 800 800 800 800 800 800 80	708 724 722 726 730 726 733 730 733 735 715 741 743 744 749 745 753 747 751 740 764	300 300 200 200 200 300 300 300 300 300	1,00 1,65 — — 0,99 — 0,66 0,66 0,66 0,66 2,10 0,99 1,32 1,00 — 0,99 1,98 1,65 1,32 1,32 1,32	8,15 8,03 8,68 8,50 7,75 8,58 9,00 8,02 7,46 8,82 7,46 7,82 7,87 9,20 8,02 7,21 8,22 8,02 7,21 8,22 8,02 8,02	1,88 1,32 1,50 1,50 1,01 1,13 1,32 1,50 1,98 1,32 1,65 1,65 1,47 1,65 1,47 1,65 1,47 1,65 1,47 1,74 1,17

путем расчета термических данных, близки к таковым по химическим определениям и вполне укладываются в допустимую ошибку (± 0.31 форм. ед.).

Авторы выражают сердечную признательность акад. Ф. В. Чухрову за пенные советы при подготовке рукописи к печати.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии Академии наук СССР Москва

Поступило 12 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. Д. Борнеман-Старынкевич, В сборн. Методы химического анализа и состав минерала, «Наука», 1971. ² Е. П. Вальяшихина, Е. В. Власова, Б. М. Кобцев, В сборн. Идеи академика Д. С. Белянкина в области петрографии и их дальнейшее развитие, «Наука», 1971. ³ Е. П. Вальяшихина, Л. М. Лурье, Д. О. Онтоев, Мин. сборн. Львовск. гос. унив. им. Ив. Франко, 1971, № 25, в. 2. ⁴ К. Б. Кепежинскас, Статистический анализ хлоритов и их парагенетические типы, «Наука», 1965. ⁵ В. Ю. Урбах, Биометрические методы, «Наука», 1964