УДК 541.11 ХИМИЯ

Член-корреспондент АН СССР Я. И. ГЕРАСИМОВ, И. А. ВАСИЛЬЕВА, Ж. В. ГРАНОВСКАЯ, А. Ф. МАЙОРОВА

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НЕСТЕХИОМЕТРИЧЕСКОЙ ДВУОКИСИ ЦИРКОНИЯ В ИНТЕРВАЛЕ ТЕМПЕРАТУР 1173—1373° К

Двуокись циркония, являющаяся высшим устойчивым окислом в системе Zr-O, существует в трех различных модификациях: моноклинной — ниже 1373° K (¹), тетрагональной — от 1373 до 2573° K (²) и кубической — от 2573° до температуры плавления 2973° K (³). По мнению большинства авторов (³-5), верхняя граница области гомогенности двуокиси циркония при разных температурах соответствует стехиометрическому составу. Нижняя граница, по данным разных авторов, различна: $ZrO_{1,75}$ (2173° K), $ZrO_{1,90}$ (973° K) (³), $ZrO_{1,68}$ (2200° K) (6), $ZrO_{1,986}$ (1673° K) (4).

В отличие от стехиометрической двуокиси циркония, исследованной достаточно хорошо (5, 7-9), термодинамические данные для нестехиометрической двуокиси циркония моноклинной модификации отсутствуют.

В данной работе определены парциальные термодинамические функции нестехиометрической двуокиси циркония моноклинной модификации в интервале температур 1173—1373° К.

В качестве основного метода исследования использовался метод э.д.с. с твердым электролитом. Были изучены температурные зависимости э.д.с. элементов типа

-Pt,
$$ZrO_{2-x}|O^{2-}|Fe$$
, $Fe_{0.95}O$, Pt, (1)

где $x=0,003,\,0,004,\,0,006,\,0,007,\,0,008,\,0,012;$ Fe, Fe_{0,95}O — электрод сравнения, O= — электролит, обладающий анионной проводимостью: $0,99\text{ThO}_2-0,01\text{CaO}$. Число переноса анионов электролита, определенное с помощью стандартной ячейки, было близко к единице.

Реакция, соответствующая потенциалобразующему процессу в элементе

(1), может быть записана в виде

$$\frac{2}{\delta} \operatorname{ZrO}_{2-x} + 2\operatorname{Fe}_{0,95} O \to 1,9\operatorname{Fe} + \frac{2}{\delta} \operatorname{ZrO}_{2-x+\delta} \Delta \overline{G}_{\partial\pi}. \tag{2}$$

Для получения образцов ZrO_{2-x} использовали металлический порошкообразный цирконий, содержащий Ca 0,01, Hf 0,03, Ti < 0,005, Fe < 0,013; Si 0,003; C 0,02 вес. %, и кристаллическую ZrO_2 с содержанием основного компонента (в сумме с HfO_2) более 99,9%. Рассчитанные количества Zr и ZrO_2 тщательно перемешивали и прессовали в таблетки под давлением 200 атм/см². Таблетки затем отжигали в эвакуированных двойных кварцевых ампулах при 1323° K в течение 18-20 суток. Фазовый анализ образцов, проведенный в камере Γ инье на Cu-аноде, показал, что все образцы однофазны и имеют структуру моноклинной ZrO_2 .

Химический анализ исследуемых образцов проводили до и после опыта доокислением их до ${\rm ZrO_2}$ в токе влажного кислорода при 1273° К с учетом адсорбционной воды (10). Погрешность значений x в ${\rm ZrO_x}$ определялась по методу, известному в математической статистике и использованному в работе (11) в виде $\pm t_{0.05} \cdot (\sum S_h^2/n_k m)^{1/2}$; $t_{0.05} = 2,18$ — критерий Стьюдента для

5% уровня значимости и $\bar{f} = \sum_k n_k - m = 12$ степеней свободы; m — число серий анализов, равное 12; n_k — число анализов в данной серии, равное 2; S_h^2 — дисперсия отдельного наблюдения в данной серии анализов. Погрешность значений x в ZrO_x составляла $\pm 1 \cdot 10^{-3}$.

В работе был использован конструктивный вариапт метода э.д.с. с перазделенным газовым пространством электродов. Исследования проводились в динамическом вакууме $5\cdot 10^{-7}$ мм рт.ст. Платиновые токоотводы, таблетки электрода сравнения, электролита и изучаемого электрода, предварительно тщательно отшлифованного, поджимались друг к другу специальным устройством, описанным в (12). В собранную ячейку помещали геттер, порошок циркония в танталовых лодочках; вся ячейка устанавливалась в стакан из танталовой фольги и помещалась в кварцевый прибор, принаянный к вакуумной системе с помощью перехода кварц — молибденовое стекло. Перед опытом вся система эвакуировалась в течение 3-4 суток без нагревания, а затем при нагревании таким образом, чтобы давление в системе было пе выше $2\cdot 10^{-6}$ мм рт.ст. Измеряемые значения э.д.с. считались равновесными, если они не изменялись в течение 5-8 час. и воспроизводились при повышении и понижении температуры с точностью $\pm 1,5$ мв.

В результате исследований для всех изученных препаратов были полу-

чены зависимости $\Delta \overline{G}_{0_2} = \Delta \overline{G}_{0_2}(T)$ для реакций типа

$$\frac{2}{\delta} \operatorname{ZrO}_{2-x} + \operatorname{O}_2 \geq \frac{2}{\delta} \operatorname{ZrO}_{2-x+\delta}, \tag{3}$$

приведенные в табл. 1. В этой же таблице для каждого изученного окисла приводится число экспериментальных точек n, исследованные интервалы температур, зависимость погрешности значений ΔG_{02} от температуры,

Таблица 1

х в ZrO _x (±1·10 ⁻³)	n	$\Delta \overline{G}_{\hbox{O}_2} = \Delta \overline{G}_{\hbox{O}_2} \left(T \right) \pm \delta \Delta \overline{G}_{\hbox{O}_2}$, ккад/моль			
1,997	15	$\begin{bmatrix} -84,56-7,35\cdot10^{-3}T \pm [2,98\cdot10^{-2}+5,8\cdot10^{-6}(T-1319)^{2}]^{11_{2}} \\ 1279-1377^{\circ} \text{ K}, \ \overline{T} = 1319^{\circ} \text{ K} \end{bmatrix}$			
1,996	20				
1,994	17	$ -113,07 - 4,49 \cdot 10^{-3}T \pm [4,88 \cdot 10^{-2} + 22,1 \cdot 10^{-6} (T - 1252)^{2}]^{1/2} $ $ 1228 - 1347^{\circ} \text{ K}, \ \ \overline{T} = 1252^{\circ} \text{ K} $			
1,993	16	$ -123,46-5,21\cdot 10^{-3}T \pm [2,72\cdot 10^{-2} + 2,0\cdot 10^{-6}(T-1312)^{2}]^{1/2} $ $ 1250-1346^{\circ} \text{ K}, \overline{T} = 1312^{\circ} \text{ K} $			
1,992	17				
1,988	15				

Таблица 2

х в ZrO _х	$-\Delta \overline{H}_{\mathrm{O}_2} + \delta \Delta \overline{H}_{\mathrm{O}_2},$	$-\Delta \overline{S}_{{\hbox{\scriptsize O}}_2}\pm\delta\Delta \overline{S}_{{\hbox{\scriptsize O}}_2},$ кал моль	$\delta \Delta \overline{G}_{ ext{O}_2}$, ккал/моль		
(±1·10 ⁻³)	ккал/моль		T min	\overline{T}	Tmax
1,997 1,996 1,994 1,993 1,992 1,988	$\begin{array}{c} 84,6 \pm 3,0 \\ 100,1 \pm 2,6 \\ 113,1 \pm 5,7 \\ 123,5 \pm 1,0 \\ 134,1 \pm 3,6 \\ 229,5 \pm 4,1 \end{array}$	$\begin{array}{c} -7,3\pm3,0 \\ -5,9\pm2,2 \\ -4,5\pm4,7 \\ -5,2\pm1,7 \\ -1,3\pm2,8 \\ 45,2\pm3,1 \end{array}$	0,19 0,23 0,42 0,19 0,24 0,19	0,17 0,18 0,22 0,16 0,18 0,17	0,19 0,20 0,50 0,17 0,22 0,19

 $\delta\Delta G_{o_2}(T)$, и значение \overline{T} , при котором величина $\delta\Delta G_{o_2}$ будет минимальной. Уравнения, представленные в табл. 1, получены комбинированием уравнений $\Delta \bar{G}_{\text{эл}} = \Delta \bar{G}_{\text{эл}}(T)$ и $\Delta G_{\text{O2}} = \Delta G_{\text{O2}}(T)$ для 1,9Fe + O₂ \rightarrow 2Fe_{0,95}O: $\Delta \bar{G}_{\text{O2}} =$ $=-126.78+31.33\cdot 10^{-3}T\pm 2[58.3\cdot 10^{-4}+14.5\cdot 10^{-8}(T-1342)^{2}]^{1/2}$ Зависимости $\Delta \overline{G}_{\text{эл}} = \Delta \overline{G}_{\text{эл}}(T)$ были выведены из экспериментальных данных с помощью метода наименьших квадратов. При комбинировании уравнений использовался метод накопления ошибок. Погрешности коэффициентов линейных уравнений определялись с помощью 95% доверительного интервала.

B табл. 2 представлены значения $\Delta \overline{H}_{o_2}$ и $\Delta \overline{S}_{o_2}$ при \overline{T} и их погрешности и вычисленные значения $\delta\Delta \overline{G}_{o_2}$ при \overline{T} , T_{\max} и T_{\min} температурных интервалов. На основании данных табл. 1 для пяти температур интервала 1173— 1373° К методом наименьших квадратов были выведены зависимости вида

 $x = x(\Delta G_{0_2})$:

$$\begin{array}{lll} T, \ ^{\rm o}{\rm K} & x = [x(\Delta \overline{G}_{{\rm O}_2})] \pm i \cdot 10^{-3} \\ 1173 & 2,0077 + 0,11392 \cdot 10^{-3} \cdot \Delta \overline{G}_{{\rm O}_2} \\ 1223 & 2,0083 + 0,11891 \cdot 10^{-3} \cdot \Delta \overline{G}_{{\rm O}_2} \\ 1273 & 2,0086 + 0,12087 \cdot 10^{-3} \cdot \Delta \overline{G}_{{\rm O}_2} \\ 1323 & 2,0092 + 0,12574 \cdot 10^{-3} \cdot \Delta \overline{G}_{{\rm O}_2} \\ 1373 & 2,0097 + 0,13011 \cdot 10^{-3+} \cdot \overline{\Delta}G_{{\rm O}_2} \end{array}$$

Погрешности вычисленных по уравнениям значений x определялись сводной дисперсией, включающей дисперсии значений x_i , связанные с точностью химического анализа и отклонением значений x_i от вычислепных из

линейных зависимостей $x = x(\Delta G_{0_2})$.

Из данных табл. 2 видно, что значения $\Delta \overline{H}_{02}$ и $\Delta \overline{S}_{02}$ резко уменьшаются с отклонением от стехиометрического состава ZrO2. Такая зависимость значений ΔH_{O_2} и ΔS_{O_2} от состава нестехиометрической двуокиси циркония может указывать или на упорядочение дефектов, или на переход от одного типа дефектов к другому, или на одновременное присутствие нескольких типов дефектов.

Обсуждение дефектной структуры нестехиометрической двуокиси цир-

кония будет предложено нами в следующем сообщении.

В заключение приносим глубокую благодарность Н. В. Человской за помощь, оказанную в проведении химического анализа.

Московский государственный университет им. М. В. Ломоносова

Поступило 28 XII 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. N. Patil, E. C. Subbarao, Acta crystallogr. A, 126, 535 (1970). ² A. Г. Боганов, В. С. Руденко, А. П. Макаров, ДАН, 160, № 5 (1965). ³ R. F. Domagala, D. J. McPherson, Trans. AIME, 200, 238 (1959). ⁴ S. C. Carniglia, S. D. Brown, T. E. Schroeder, J. Am. Ceram. Soc., 54, 13 (1971). ⁵ A. H. Корнилов, И. М. Ушакова, М. С. Скуратов, ЖФХ, 411, 200 (1967). ⁵ M. Hoch, J. Am. Ceram. Soc., 47, 650 (1964). ⁵ E. Huber, E. Head, C. Holley, Zs. Phys. Chem., 68, 3040 (1964). ⁵ B. A. Кириллин, А. Е. Шейндлин, В. О. Чеховская, Теплофизика высоких температур, 4, № 6, 876 (1966). ∘ К. К. Кеlly, Ind. Eng. Chem., 36, 377 (1944). ¹⁰ А. Н. Корнилов, В. Я. Леонидов, С. М. Скуратов, ЖФХ, 38, 2013 (1967). ¹¹ А. N. Когпіlov, І. М. Ushakova, Proc. 1st Intern. Conf. Calorimetry and Thermodynamics, Warsaw, 1969. ¹² Соединения переменного состава, Л., 1969. ¹³ И. А. Васильева, С. Н. Мудрецова и др., ЖФХ, 43, № 12, 3147 (1969).