УДК 577.1

Т. В. СИРОТА, Т. В. КАКПАКОВ, Л. Ф. ПАНЧЕНКО, Н. Г. ШУППЕ

ТЕРМОЛАБИЛЬНОСТЬ 28S РИБОСОМАЛЬНОЙ РНК ИЗ ПЕРЕСЕВАЕМОЙ КУЛЬТУРЫ КЛЕТОК DROSOPHILA MELANOGASTER

(Представлено академиком А. С. Спириным 12 III 1973)

Согласно современным представлениям, в клетках эукариотов присутствуют три типа рибосомальных РНК (28S, 18S и 5S), каждый из которых состоит из единой ковалентно-пепрерывной полинуклеотидной цепи (¹). В то же время на целом ряде объектов было показано, что большая компонента рибосомальной РНК при определенных воздействиях— нагревании, обработке диметилсульфоксидом, формамидом, удалении иопов магния и т. д.— способна диссоциировать на более мелкие фрагменты (¹-¹). Высокая специфичность расположения точки разрыва, обнаруженная во всех работах, указывает на то, что наблюдаемая диссоциация скорее всего не является артефактом выделения РНК, а представляет собой реальную диссоциацию нековалентных связей в месте предсуществующего разрыва в цепи рибосомальной РНК.

Настоящая работа была поставлена с целью изучить изменение свойств рибосомальной РНК, выделенной из пересеваемой культуры клеток D. melanogaster, при нагревании, а также для выяснения того, на каком из этапов созревания рибосомальной РНК из высокомолекулярного предшественника она приобретает свойство термолабильности.

В работе в качестве объекта была использована культура пересеваемых клеток D. melanogaster диплоидной сублинии 67j25Д (*). Выделение РНК производили: а) методом горячей фенольной депротеннизации Перрера и Дарнелла (*) и б) методом Хайатта (10), который позволяет на холоду выделить все клеточные нуклеиновые кислоты, а ДНК затем удаляется обработкой ДНКазой (использовали ДНКазу фирмы Вортингтон, США). Центрифугирование РНК в градиенте сахарозы (5—20%)

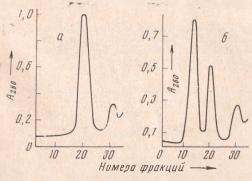


Рис. 1. Кривые поглощения РНК, выделенной из клеток Drosophila melanogaster при 260 м μ (A_{260}) при анализе в градиенте сахарозы: a — РНК выделялась по методу Шеррера, δ — по методу Хайатта

проводили на ультрацентрифугах УЦП-40 (СССР) или Хитачи 65Р (Япония) в роторе SW 25.1 в течение 14 час. при 23 000 об/мин. Сахарозу приготавливали на 0,01 *М* калий-ацетатном буфере, рН 5,0, содержащем 0,1 *М* NaCl и 0,1% додецилсульфата натрия. Все растворы для выделения и фракционирования содержали 100 µг/мл поливинилсульфата.

Седиментограммы РНК, выделенной из пересеваемой культуры клеток разными методами, приведены на рис. 1. Если для выделения РНК

использовалась методика горячей фенольной депротеинизации, то на седиментограммах пик 28S РНК отсутствовал и обнаруживались только пики с константами седиментации 18S и 4S (рис. 1a). На седиментограммах РНК, выделенной по методу Хайатта, обнаруживались все три характерных пика РНК: 28S, 18S и 4S (рис. 1б). Если такую РНК после выделения и переосаждения спиртом подвергнуть кратковременному

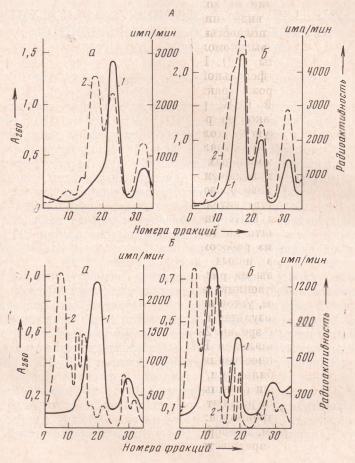


Рис. 2. Седиментограммы РНК, выделенной после инкубации с меченым предшественником в течение 40 мин. (E) и в течение 2,5 час. (A): I — оптическая плотность; 2 — радиоактивность. a, δ — те же, что на рис. 1

нагреванию до 60° в течение 3 мин., то наблюдается полный распад 28S рибосомальной РНК. При этом, если судить по площади, занимаемой пиками, она количественно переходит в 18S РНК, а увеличения количества РНК в области низкомолекулярных фракций не происходит. Подобный переход говорит о том, что при нагревании 28S рибосомальная РНК диссоциирует на две молекулы 18S РНК, и точка разрыва находится в середине молекулы 28S РНК. 18S рибосомальная РНК и 18S—продукты распада 28S рибосомальной РНК—термостабильны и не распадаются даже при длительном прогревании при 65°.

Известно, что в клетках эукариотов рибосомальная РНК синтезируется вначале в виде гигантских молекул предшественников, которые затем превращаются через целый ряд промежуточных стадий в молекулы, функционирующие в клетке. В процессе этого перехода предшественник — продукт свойства РНК могут изменяться. Поэтому нас интересовало будут ли молекулы — предшественники рибосомальных

РНК обладать способностью распадаться при нагревании на более мелфрагменты. Для выяснения этого вопроса РНК клеток была помечена H³-уридином в течение 40 мин. Метка при этом находится образом в молекулах-предшественниках (5-7). Затем РНК выделялась с помощью различных методов и анализировалась в градиенте сахарозы. Результаты этих экспериментов приведены на рпс. 2Б. Видно, что при выделении на холоду основная часть новообразованной РНК седиментирует в виде пика с константой седиментации 38S (рис. 26). Эта величина полностью совпадает с константой седиментации, найденной ранее для высокомолекулярного предшественника рибосомальной РНК дрозофилы (5-7). Если для выделения РНК использовалась методика горячей фенольной депротеинизации, картина распределения в градиенте сахарозы практически не изменялась. В то же время пик 28S рибосомальной РНК, регистрируемый по у.-ф. поглощению, отсутствует (рис. 2a). Такой же результат можно получить, если прогреть при 60° РНК, выделенную на холоду. Таким образом, высокомолекулярные предшественники рибосомальных РНК устойчивы к нагреванию в отличие от 28S рибосомальных РНК, находящихся в составе рибосом.

Увеличение времени включения предшественника до 2,5 час., когда в клетках появляются новообразованные 28S рибосомальные РНК, позволяет исследовать их чувствительность к нагреванию. Важно, что за это время новообразованная РНК еще не успевает войти в состав рибосом. Этот вывод можно сделать на том основании, что удельная активность 28S РНК, выделенной из рибосом, более чем на 2 порядка ниже, чем у 28S, выделенной из целых клеток. Результаты соответствующих экспериментов приведены на рис. 2A. Видно, что так же как и высокомолекулярный предшественник, новообразованная 28S РНК, еще не во-

шедшая в состав рибосом, устойчива к нагреванию.

Полученные нами результаты показывают, что в пересеваемой культуре клеток дрозофилы зрелая 28S рибосомальная РНК термолабильна, так же как 28S рибосомальная РНК из целых личинок или мух (5). Однако молекулы-предшественники, выделенные из клеток культуры, оказываются термостабильными, в отличие от РНК, выделенной из имагинальных дисков или слюнных желез, меченных in vitro (6, 7). Кроме того, наши данные подтверждают результаты, полученные ранее на клетках слюнных желез хирономуса: термолабильность 28S рибосомальной РНК является свойством, приобретаемым ею после завершения процесса созревания из молекул-предшественников скорее всего только в составе рибосомы (6).

Авторы считают приятным долгом выразить благодарность В. А. Гвоз-

деву за ценные советы при обсуждении работы.

Второй Московский государственный медицинский институт им. Н. И. Пирогова

Поступило 10 III 1973

Институт атомной энергии им. И. В. Курчатова Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. С. Спирин, Л. Н. Гаврилова, Рибосома, «Наука», 1971, стр. 69. ² S. W. Applebaum, R. P. Ebstein, G. R. Wyatt, J. Mol. Biol., 21, 29 (1966). ³ R. C. Van den Bos, R. J. Planta, Nature, 225, 183 (1970). ⁴ R. B. Koser, J. R. Colier, Biochim. et biophys. acta, 254, 272 (1971). ⁵ J. R. Greenberg, J. Mol. Biol., 46, 85 (1969). ⁶ L. Rubinstein, U. Glever, Biochim. et biophys. acta, 246, 517 (1971). ⁷ W. H. Petri, J. W. Fristrom et al., Molec. Gen. Genetics, 110, 245 (1971). ⁸ B. T. Какпаков, В. А. Гвоздевидр., Генетика, 6, № 12, 67 (1969). ⁹ K. Scherrer, J. E. Darnell, Biochem. Biophys. Res. Commun., 7, 486 (1962). ¹⁰ H. Hiatt, J. Mol. Biol., 5, 217 (1962).