УДК 542.957.1:543.425

ХИМИЯ

Б. Г. ГРИБОВ, Г. М. ГУСАКОВ, Б. И. КОЗЫРКИН, Е. Н. ЗОРИНА

СПЕКТРЫ Я.М.Р. НЕКОТОРЫХ КООРДИНАЦИОННЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ГАЛЛИЯ С ТРИЭТИЛМЫШЬЯКОМ

(Представлено академиком Г. А. Разуваевым 30 III 1973)

Алкильные соединения галлия легко образуют координационные комплексы с электронодонорными молекулами, содержащими элементы V и VI групп периодической системы. К настоящему времени известен широкий круг таких комплексов (1-4). Исследование этих веществ представляет интерес не только с точки зрения определения их строения и реакционной способности, но и с точки зрения изучения процессов образования полупроводниковых материалов с использованием металлоорганических соединений, где эти комплексы могут образовываться в качестве промежуточных соединений. Как было показано (5-7), метод я.м.р. удобен в исследовании подобных донорно-акцепторных комплексов.

Установлена корреляционная зависимость между химическим сдвигом протонов комплекса и энтальпией образования этих соединений (8). В данной работе изучены я.м.р. спектры координационных соединений общей формулы: $R_{3-n}Cl_nGa \cdot As(C_2H_5)_3$, где $R-CH_3$, C_2H_5 ; n=0,1. Для сравнения были сняты спектры исходных металлоорганических соединений. Методика приготовления изученных комплексов описана в работе (4).

Спектры я.м.р. снимали при 28° на спектрометре JNM4H-100. Исследуемые вещества под защитой аргона заливали в герметичные 5 мм ампулы. В качестве внешнего эталона использовали бензол, а внутреннего — гексаметилдисилоксан. Этильные производные анализировали как A_3B_2 системы (9, 10). Значения химических сдвигов приведены в табл. 1.

Как видно из табл. 1, наблюдается значительный парамагнитный сдвиг CH_2 -групп триэтилмышьяка по сравнению со свободным донором и диамагнитный сдвиг протонов ближайших к галлию углеродных атомов по срав-

Таблица 1

Соединение *	С, об. %	8144	82	δ _{1,2}	∂ ₃	84	83,4
(CH ₃) ₃ Ga · As(CH ₂ CH ₃) ₃	100	+0,463			-1,091	-1,556	0,465
(CH ₃) ₂ ClGa·As(CH ₂ CH ₃) ₃	100	+0,537 +0,140		_	-1,125 -1,158	-1,514 $-1,808$	0,389 0,650
(CH ₃ CH ₂) ₃ Ga·As(CH ₂ CH ₃) ₃	100	+0,098 $-1,033$	-0,283	-0,750	-1,184 -1,117	-1,688 $-1,582$	0.504
(CH ₃ CH ₂) ₂ ClGa· ·As(CH ₂ CH ₃) ₃	100	-0,985 $-1,090$ $-1,083$	-0,215 $-0,635$ $-0,626$	-0.670 -0.455 -0.457	-1,120 $-1,188$ $-1,185$	-1,517 $-1,548$ $-1,727$	0,397 0,660 0,542
As(CH ₂ CH ₃) ₃	100				-1,048 -1,055	-1,316 -1,300	0,258
(CH ₃) ₃ Ga (CH ₃ CH ₂) ₃ Ga	3	+0,035 $-1,104$			_	_	_
(CH ₃) ₂ ClGa CH ₃ CH ₂) ₂ ClGa	3	-0,233 $-1,132$	-0,808	_0,324			
(CH ₃) ₃ Ga · O(CH ₂ CH ₃) ₂	100	+0,448		_	—1 ,066	-3,594	2,528

^{• 3%} растворы в четыреххлористом углероде. •• Цифрами 1,3 обозначены СН₃-группы Ga и As соответственно, а цифрами 2,4 — СН₂-группы.

нению со свободным акцептором, что свидетельствует об образовании до-

норно-акцепторных комплексов.

Замещение алкильной группы галлия на галоген в координационном соединении увеличивает внутренний химический сдвиг (ба,4) этильных групп мышьяка. Этого следовало ожидать, учитывая большую электроотрицательность галогена по сравнению с алкильной группой. Можно считать, что для данных соединений прочность связи галлий— мышьяк для R₂ClGa · \cdot As(C₂H₅)₃ больше, чем для R₃Ga · As(C₂H₅)₃.

Однако, как видно из величины химических сдвигов разбавленных растворов комплексов, $\delta_{3,4}$ для более электроотрицательных метильных производных галлия несколько меньше, чем для этильных производных. Несомненно, что химический сдвиг протонов изученных соединений зависит от полярных, магнитных и других факторов. По-видимому, только точный количественный учет всех этих факторов позволит установить связь между химическим сдвигом и прочностью связи металл — металл в исследуемых соединениях.

Мы оценили энергию связи комплексов и другим способом, а именно, измеряя зависимость константы образования комплекса от температуры.

Поскольку энергию образования комплекса можно качественно отождествить с разностью энергии диссоциации и энергии диффузионного барьера, которая для многих жидкостей лежит в интервале 0,3-1,5 ккал/моль, то по энергии образования можно качественно судить о прочности связи галлий — мышьяк (¹¹).

В случае обмена ядерных групп, не связанных спин-спиновым взаимодействием с остальной частью молекулы (но, возможно, связанных спинспиновым взаимодействием внутри группы), с короткими временами жизни ядерных спинов в комплексе и в свободном доноре (акцепторе), химический сдвиг при различных температурах есть весовое среднее химического сдвига в комплексе и в свободном доноре (акцепторе) (12, 13):

 $\delta = \delta_{A}p_{A} + \delta_{A'B}p_{A'B},$

где δ_{A} , $\delta_{A'B}$ — химические сдвиги одних и тех же ядер в комплексе и вне комплекса, p_{A} , $p_{A'B}$ — соответствующие парциальные заселенности.

Отсчитывая химический сдвиг от $\delta_{A'B}$ получим $\delta = \delta_A p_A$, где p_A приближенно дается уравнением

$$p_{\rm A} \cong \sqrt{K/C},\tag{1}$$

K — константа образования комплекса $K = (A \cdot B) / (A) \cdot (B)$, $K = K_0 e^{E/RT}$ (2)

Из (1) и (2) можно определить E.

Для $(CH_3)_3Ga \cdot As(C_2H_5)_3$ $E = 7.3 \pm 1.5$ ккал/моль

Для $(CH_3)_2ClGa \cdot As(C_2H_5)_3$ $E = 9.7 \pm 1.5$ Для $(CH_3)_3Ga \cdot O(C_2H_5)_2$ $E = 10.2 \pm 1.5$

Метод я.м.р. оказался удобным не только для идентификации соединений и исследования характера связи в них, но и для определения их термической устойчивости. Так, нами показано, что эфират триметилгаллия при температуре его кипения (98°) диссоциирован на 25%, а (CH₃)₃Ga. ·As(C₂H₅)₃ — на 25% при 130°.

Поступило 9 II 1973

1351

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 G. E. Coates, M. Z. N. Green, K. Wade, The Main Group Elements, London, 1967. ² G. E. Coates, J. Chem. Soc., 1951, 2003. ³ D. F. Shriver, R. W. Parry et al., Inorg. Chem., 2, № 4, 867 (1963). ⁴ Б. Г. Грибов, Б. И. Козыркин, Е. Н. Зорина, ДАН, 204, № 2, 350 (1972). ⁵ S. Brownstein, A. M. Eastham, G. A. Latremonille, J. Phys. Chem., 67, 1028 (1963). ⁶ M. F. Hawthorne, W. L. Budde, J. Am. Chem. Soc., 86, 5337 (1964). ⁷ J. B. D. R. Roos, I. P. Oliver, J. Am. Chem. Soc., 89, 3970 (1967). ⁸ A. Leib, M. T. Emerson, J. P. Oliver, Inorg. Chem., 4, № 12, 1825 (1965). ⁹ P. T. Nasarimhan, M. T. Rogers, J. Am. Chem. Soc., 82, 34 (1960). ¹⁰ P. T. Nasarimhan, M. T. Rogers, J. Am. Chem. Soc., 82, 5983 (1960). ¹¹ M. Хьюз, Физическая химия, 2, ИЛ, 1962. ¹² H. S. Gutovsky, A. Saika, J. Chem. Phys., 21, 1688 (1953). ¹³ Абра-1 ам, Ядерный магнетизм, ИЛ, 1960.