УДК 541.11.536

ФИЗИЧЕСКАЯ ХИМИЯ

Ю. ХЕКИМОВ, В. А. ЛЕВИЦКИЙ, Н. Н. ШЕВЧЕНКО, член-корреспондент АН СССР Я. И. ГЕРАСИМОВ

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА МЕТАЦИРКОНАТА СТРОНЦИЯ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ

В работе определялись термодинамические параметры реакции

$$SrO + ZrO_2 \rightarrow SrZrO_3,$$
 (1)

поскольку в литературе до последнего времени отсутствовали какие-либо экспериментальные термодинамические данные для этой реакции при повышенных температурах. В качестве метода исследования был выбран метод э.д.с. с твердым $|F^-|$ -понным электролитом, позволяющий в элементах типа O_2 , $Pt|\mu_1(MeO)|Fe^-|\mu_2(MeO)|Pt$, O_2 определять химические потенциалы окислов щелочноземельных металлов в смесях двойных окис-

ных соединений, находящихся в равновесии друг с другом (1).

Для определения равновесных фаз, сосуществующих с SrZrO₃ в исследуемом электроде, была изучена часть системы SrO — ZrO2 в области, богатой ZrO2. Образцы готовились из SrCO3 и ZrO2 марки х.ч. через 5 мол. %. а вблизи составов, отвечающих индивидуальным соединениям, через 1 мол. %. Таблетки прокаливались на воздухе и в вакууме в интервале 1100—1300° С в течение 100—200 час. и подвергались медленному охлаждению или закаливанию в жидкий азот. Степень достижения равновесия и фазовый состав контролировался рентгенографически. Съемка проводилась в фокусирующей камере с пзогнутым монокристаллом германия в качестве монохроматора (CuK_{α} -излучение). Согласно данным рештгенофазового анализа в исследованном интервале температур в системе SrZrO₃ — ZrO₂ метацпрконат сосуществует с ZrO₂ без заметных областей твердых растворов SrO в ZrO₂ и ZrO₂ в SrZrO₃, что хорошо согласуется с результатами исследования фазовых соотношений системы SrO - ZrO2 при более высоких температурах (2). Метацирконат стронция был проиндицирован в предположении тетрагональной сингонии с параметром элемептарной ячейки $a=5.797\pm0.003$, $c=8.198\pm0.003$ Å*. Определенные параметры решеток SrZrO₃ и ZrO₂ хорошо совпали с данными (2).

В связи со сказанным для непосредственного опредсления термодинамических параметров реакции в интервале $1180-1370^\circ$ К измерялись э.д.с. (E) ячейки

(-) O₂, Pt | SrO, SrF₂ | CaF₂ | SrZrO₃, ZrO₂, SrF₂ | Pt, O₂ (+).

Электроды ячейки готовились аналогично (4). Рептгенографическое исследование электродных смесей, содержащих различные количества $SrZrO_3$ и ZrO_2 , после прокаливания их в вакууме и после электрохимических измерений не обнаружило заметного взаимодействия потенциалобразующих равповесных фаз с SrF_2 . В качестве электролита, обладающего чисто $|F^-|$ -понной проводимостью, использовались пластники оптически прозрачных монокристаллов CaF_2 толщиной 3-5 мм. Описание использованного в экспериментах прибора и методики проведения опытов дано в (4,5). С целью исключения влияния газообразных углеводородов на измеряемые потенциалы ячейки давление паров вакуумной смазки в прибо-

^{*} Обнаружить отмеченные в (³) полиморфные превращения SrZrO $_3$ при 700, 830 и 1170° С нам не удалось.

Значения э.д.с. изученной ячейки и терамодипамические параметры реакции (1)

We lay	Выдержка, час.			TRANSPORT OF THE PARTY OF THE P		
T. °K	$T_{ m const}$	$E_{ m const}$	Е і, в	$\pm \Delta E_i$, в	— ΔG (1), ккал/моль	$-\Delta H_{2gg}$ (1), ккал/моль
1182 1205 1233 1238 1253 1257 1262 1289 1300 1307 1310 1312 1315 1317 1333 1339 1364	11,5 19,5 8,0 12,5 21,0 8,0 12,0 2,0 8,0 2,0 8,5 3,0 6,5 24.0 6,0 17,0	11,5 18,0 8,0 11,5 21,0 7,0 12,0 2,0 8,0 2,0 8,5 3,0 6,5 23,5 6.0 16,0	0,4398 0,4434 0,4433 0,4445 0,4475 0,4500 0,4356 0,4385 0,4506 0,4341 0,4385 0,4558 0,4558 0,4558 0,4347 0,4347 0,4395	0,0029 0,0026 0,0023 0,0022 0,0017 0,0031 0,0016 0,0044 0,0007 0,0034 0,0012 0,0022 0,0020 0,0612 0.0032 0.0028 0.0011	$\begin{array}{c} 20,28\pm0,13\\ 20,45\pm0,12\\ 20,45\pm0,11\\ 20,69\pm0,10\\ 20,64\pm0,08\\ 20,75\pm0,14\\ 20,09\pm0,05\\ 20,22\pm0,07\\ 20,78\pm0,20\\ 20,05\pm0,03\\ 20,02\pm0,16\\ 20,22\pm0,05\\ 21,02\pm0,10\\ 20,29\pm0,05\\ 21,02\pm0,10\\ 20,29\pm0,09\\ 20,97\pm0,05\\ 20,30\pm0,15\\ 20,28\pm0,13\\ 20,27\pm0,05\\ \end{array}$	18,52 18,68 18,68 18,92 18,88 18,99 18,33 18,46 18,26 18,26 18,26 18,26 18,52 19,21 18,54 18,54 18,51 18,52
	1,0	The state of	Сретнее	$\pm 0,0022$	Сретнее 18,63±0,2	

ре в процессе опыта понижалось путем охлаждения шлифа реактора твердой углекислотой. Для проверки воспроизводимости измеряемых значений E опыты проводились с различными партиями исследуемых электродов.

Апализ кинетических кривых удачных опытов показал, что равновесные значения потенциалов устанавливались спустя сутки после впуска кислорода в реактор и были устойчивы в исследованном интервале температур в течение 3-5 суток. Как видно из данных табл. 1 и рис. 1, прибор выдерживался при постоянном значении э.д.с., соответствующей каждой температуре, от 2 до 23 час.; за это время отклонение измеряемых потенциалов от их средних значений составляло $\pm 0,0022$ в. Поскольку отдельные значения E, измеренные при медленном изменении температуры, отличались от липпи E = f(T), рассчитанной методом наименьших квадратов *, не более чем выдержанные во времени значения э.д.с., для более точного определения наклона прямой E = f(T) были использованы также результаты отдельных измерений э.д.с., полученные при медленном изменении температуры ячейки. С учетом величин э.д.с. табл. 1 и 18 отдельных значений E зависимость э.д.с. от температуры имеет вид **

$$E(\pm 0{,}0114) = 0{,}4229(\pm 0{,}0684) + 1{,}91(\pm 5{,}34) \cdot 10^{-5} \cdot T$$
, в, откуда для реакции (1) получим
$$\Delta G_1^0(\pm 530) = -19510(\pm 3150) - 0{,}87(\pm 2{,}46) \cdot T$$
, кал. (2)

$$E(\pm t_{0.05} \cdot S_E) = a(\pm t_{0.05} \cdot S_a) + b(\pm t_{0.05} \cdot S_b).$$

Погрешности величин E, a и b охарактеризовывались доверительным интервалом $\pm t_{0.05} \cdot S_i$, где S_i — квадратичная погрешность соответствующих величин, а $t_{0.005}$ — критерий Стьюдента 95% вероятности, равный 2 при числе экспериментальных точек не меньше 18-20.

** Экспериментальные данные табл. 1 можно представить в виде следующих уравпений:

$$E(\pm 0.0138) = 0.4489 (\pm 0.0840) - 0.38 (\pm 6.6) \cdot 10^{-5} \cdot T$$
, в, $\Delta G_1'(\pm 640) = -20700 (\pm 3870) + 0.17 (\pm 3.04) \cdot T$, кал·

^{*} Результаты измерений обрабатывались в линейном приближении

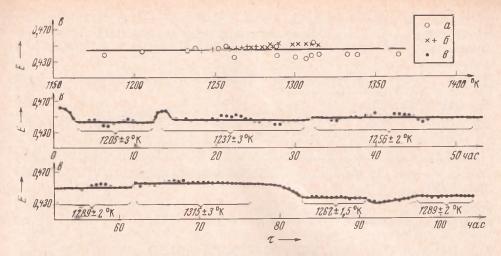


Рис. 1. Зависимость э.д.с. от температуры ячейки O_2 , $Pt \mid SrO$, $SrF_2 \mid F^- \mid SrZrO_3$, ZrO_2 , $SrF_2 \mid Pt$, O_2 и часть кинетической кривой одного из опытов. a — выдержанные во времени значения E; δ — значения E, полученные при медленном пошижении или повышении температуры ячейки; δ — отдельные значения E, измеренные в процессе опыта при разных температурах

Комбинируя полученные значения термодинамических параметров реакции (1) с соответствующими термодинамическими функциями для SrO и ZrO_2 по $\binom{6}{7}$, для реакций

$$Sr(\mathcal{H}) + ZrO_2 + \frac{1}{2}O_2 \rightarrow SrZrO_3, \tag{3}$$

$$Sr(\pi) + Zr + \frac{3}{2}O_2 - SrZrO_3$$
 (4)

в интервале 1100-1500° К находим

$$\Delta G_3^0 = -161700 + 23{,}78 \cdot T$$
, кал; $\Delta G_4^0 = -423000 + 64{,}21 \cdot T$, кал.

В литературе отсутствуют экспериментальные значения термодинамических свойств $SrZrO_3$ при повышенных температурах. В (*) приводится величина теплоты реакции (1) при 298° К ($\Delta H_{29.8}^0(1) = -17$, 8ккал/моль), полученная, на основании определенной калориметрически теплоты реакции (5)

$$SrCO_3 + ZrO_2 \rightarrow SrZrO_3 + CO_2(ras)$$
 (5)

и приведенных в (9, 10) значений энтальпий образования SrO и SrCO₃.

Для сравнения данных, полученных из э.д.с., с имеющейся калориметрической величиной при 298° К в табл. 1 приведены значения ΔH_{298}^{0} (1), рассчитанные на основании третьего закона с использованием имеющихся в литературе (6 , 11 , 12) термодинамических функций участиков реакции (1) *. Как видно, отсутствие тенденции к увеличению или уменьшению ΔH_{208}^{0} (1) с изменением температуры указывает на отсутствие систематических ошибок в экспериментальных данных. Средние значения теплоты реакции (1), рассчитанной по третьему закону (ΔH_{298}^{0} (1) = -18.6 ± 1.5 ккал/моль) и по второму закону (ΔH_{298}^{0} (1) = -17.7 ± 3.5 ккал/моль), в пределах приводимых погрешностей согласуются с величиной -17.8 ккал/моль, определенной из данпых (7 , 8).

^{*} Из-за отсутствия в литературе высокотемпературных значений теплоемкостей для $SrZrO_3$ зависимость $\Delta C_p = f(T)$ реакции (1) принималась равной зависимости $\Delta C_p = f(T)$ аналогичной реакции образования $SrTiO_3$ из SrO и TiO_2 .

Используя среднее значение (ΔH_{293}^0 (1) = -18.0 ± 1.5 ккал/моль) величин -18.6, -17.7 и -17.8 ккал/моль с учетом стандартных теплот образования SrO и ZrO₂ (10 , 13) и энтропий Sr(тв), Zr, O₂(газ) и SrZrO₃ (6 , 10) для реакции

$$Sr(TB) + Zr(TB) + \frac{3}{2}O_2(FB) \rightarrow SrZrO_3$$
 (6)

при 298° К паходим:

 $\Delta H^0_{298}(6) = -422.6 \pm 2.5$ ккал/моль; $\Delta G^0_{298} = -402.4 \pm 2.8$ ккал/моль.

Эти значения можно рекомендовать для употребления вместо величин ($\Delta H_{298}^0 = -418,3$ и $\Delta G_{298}^0 = -398,1$ ккал/моль), принятых в настоящее время (14).

Московский государственный университет им. М. В. Ломоносова

Поступило 3 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. Benz, C. Wagner, J. Phys. Chem., 65, 1308 (1961). ² W. C. Simmons, Dissert. Abstracts, 29 (9), 3299 (1969). Ohio State University, U.S.A., 1968. ³ L. Carlson, Acta crystallogr., 23, 901 (1967). ⁴ B. A. Левицкий, Ю. Я. Сколис, идр., ЖФХ, 46, в. 6, 1411 (1972). ⁵ Т. Н. Резухина, В. И. Лаврентьев идр., ЖФХ, 35, 1367 (1961). ⁶ Термодинамические свойства индивидуальных веществ. Справочник под ред. В. П. Глушко, Л. В. Гурвича и др. Изд. АН СССР. 1962. ⁷ А. R. Stull, Н. Ргорhet, JANAF Thermochemical Tables, 2 Ed., U. S. Department of Commers. Nat. Bur. Stand., U.S.A., 1971. ⁸ А. С. Львова, Н. Н. Фсдосьев, ЖФХ, 38, 28 (1964). ⁹ Selected Values of Chemical Thermodynamic Properties Nat. Bur. Stand., Washington, Circ. 500, 1952. ¹⁰ Selected Values of Chemical Thermodynamic Properties Nat. Bur. Stand. Technical Note 270—6, Washington, U.S.A. 1971. ¹¹ Е. G. King, W. W. Weller, U. S. Bur. Min. Rep. Invest., № 5571 (1960). ¹² О. Киbashewski, Е. Еvans, A. Alcock, Metallurgical Thermochemistry, London, 1967. ¹³ А. Н. Корнилов, Н. М. Ушакова, С. М. Скуратов, ЖФХ, 41, 200 (1967). ¹⁴ М. Х. Карапетьянц, М. Л. Карапетьянц, Основные термодинамические константы неорганических и органических веществ, М., 1968.