А. В. КУЗЬМИНЫХ

изопроекционное свойство сферы

(Представлено академиком А. Д. Александровым 19 IX 1972)

В 1969 г. А. Д. Александровым был поставлен вопрос о том, является ли тело, все ортогональные проекции которого конгруэнтны, шаром. Ответ

на него дает приводимая ниже теорема.

Рассмотрим множество $A \subseteq E^3$ и образы pe(A) при ортогональном проектировании p на плоскость $E^2 \subseteq E^3$ множеств e(A) ($e \in \mathscr{E}(3)$, где $\mathscr{E}(n)$ — группа движений E^n). Будем говорить, что множество $M \subseteq E^2$ конгрузнтно множеству $M' \subseteq E^2$, если $\exists e \in \mathscr{E}(2)$ такое, что M = e(M').

Теорема. Если $A \subset E^3$ — компакт такой, что $\forall e \in \mathcal{E}(3)$ ре(A) конгруэнтно p(A), то $A = S^2 \cup V$, где S^2 — сфера, а V — некоторое множе-

ство, лежащее внутри шара, ограниченного сферой S^2 .

Доказательство.

И е м м а. Пусть $B \subset E^2$ — компакт. Тогда либо $\exists O' \subseteq E^2$ и натуральное п такие, что B инвариантно относительно поворотов E^2 вокруг O' на углы $2k\pi/n$, $0 \le k < n$, и только относительно этих движений E^2 , либо B есть объединение концентрических окружностей. (B инвариантно относительно $e \subseteq \mathcal{E}(2)$, если B = e(B).)

Доказательство следует из компактности группы движений E^2 , отно-

сительно которых компакт инвариантен.

Пусть p(A) удовлетворяет первому заключению леммы. Будем считать,

что плоскость проекций есть $\{(x, y, z): z = 0\} \subseteq E^3$.

Рассмотрим группу SO(3) вращений E^3 около точки $O \subseteq E^3$. Пусть $\{\bar{a}_1, \bar{a}_2, \bar{a}_3\}$ — репер в E^3 с началом в O такой, что $\forall i, i=1, 2, 3, \|\bar{a}_i\| = \sup \|OM\| \{M \subseteq A\}$. Метрика d_s в SO(3) определяется следующим образом: $d_s(s_1, s_2) = \inf \|s_1(\bar{a}_i) - s_2(\bar{a}_i)\| \{i=1, 2, 3\}$, где $s_1, s_2 \subseteq SO(3)$.

Рассмотрим пространство \mathfrak{X} компактов из E^2 с расстоянием d(B,B')= = inf $\rho\{(B,\rho)\supset B',\ (B',\rho)\supset B,\ \rho\geqslant 0\}$, где $B,\rho)$ — ρ -окрестность компак-

та B (т. е. объединение ρ -окрестностей всех его точек).

Пусть $F: SO(3) \to \mathfrak{X}$ такое, что F(s) = ps(A), $s \in SO(3)$. Легко видеть,

что отображение F равномерно непрерывно.

По лемме, для p(A) $\exists O_i \in E^2$ и натуральное n такое, что p(A) инвариантно только относительно поворотов E^2 вокруг O_i на углы $2k\pi/n$, $0 \le k < n$.

Пусть $U = \{(r, \varphi) \in E^2 | 0 \le r < \infty, 0 \le \varphi < 2\pi / n\}$. Назовем n-з в е здо й $Z^n(O', \varphi)$ с вершиной O' и углом φ объединение n лучей в E^2 с концами в точке O' таких, что угол между любой парой соседних из них равен $2\pi / n$, а угол между осью абсцисс и лучом $h(Z^n(O', \varphi)) \cap U$ равен φ , где

h — сдвиг E^2 на вектор O'O.

Для $s \in SO(3)$ рассмотрим произвольное движение $e_s \in \mathcal{E}(2)$ такое, что $ps(A) = e_s(p(A))$. Определим $\Phi \colon SO(3) \to E^2 \times S^1$ следующим образом: $\Phi(s) = (e_s(O_1), n\varphi_s)$, где φ_s — угол, соответствующий образу $Z^n(e_s(O_1), \varphi_s)$ n-звезды $Z^n(O_1, 0)$ при движении e_s . Отображение Φ задано корректно, т. е. $Ve_s^{(1)}$, $e_s^{(2)} \in \mathcal{E}(2)$ таких, что $ps(A) = e_s^{(i)}(p(A))$, i = 1, 2, образы $\Phi(s)$, определенные посредством $e_s^{(1)}$ и $e_s^{(2)}$, совпадают. В самом деле, в про-

тивном случае p(A) инвариантно относительно $(e_s^{(2)})^{-1}e_s^{(1)}$; следовательно, по лемме $(e_s^{(2)})^{-1}e_s^{(1)}$ есть новорот около O_1 на угол вида $2k\pi/n$, $0 \le k < n$, т.е. $Z^n(O_1,0)$ инвариантна относительно $(e_s^{(2)})^{-1}e_s^{(1)}$, что невозможно по предположению.

Для доказательства непрерывности Ф предположим противное и рассмотрим последовательность $\{s_k\}$, $s_k \in SO(3)$, такую, что $\lim s_k = s_0$,

 $s_0 \in SO(3)$, Ho lim $\Phi(s_h) \neq \Phi(s_0)$.

 $\underset{s \in SO(3)}{\cup} e_s(O_i)$ (это множество лежит в круге Вследствие ограниченности радпуса $\sup \|OM\|\{M \in A\} + \rho(p(A), O_1)$ с центром в O) и компактности S существует подпоследовательность $\{\Phi(s_{k_1})\}$ последовательности $\{\Phi(s_k)\}$, **с**ходящаяся к некоторому $(D_0', \varphi_0') \neq (D_0, \varphi_0) = \Phi(s_0)$.

Пусть $e_0, e_0' \in \mathcal{E}(2)$ таковы, что $Z^n(D_0, \varphi_0) = e_0(Z^n(O_1, 0))$ и $Z^n(D_0', \varphi_0') = e_0'(Z^n(O_1, 0))$. Следовательно, $e_0(p(A)) \neq e_0'(p(A))$ (ибо в противном случае $Z^n(O_1, 0)$ была бы инвариантна относительно $(e_0)^{-1}e_0$,

т. е. имело бы место равенство $(D_0, \varphi_0) = (D_0', \varphi_0')$.

Пусть точка $G \in e_0(p(A))$ такова, что $G \in e_0'(p(A))$. Вследствие компактности $e_0'(p(A))$ имеем, что $\rho(G, e_0'(p(A))) = \rho_0 > 0$. Существует натуральное n_0 такое, что $\forall n_1 > n_0$ $e_0(p(A)) \subset (e_{n_1}(p(A)), e_{n_2}(p(A)))$ $\rho_0/2$) и $e_{n_i}(p(A)) \subset (e_0(p(A)), \rho_0/2)$, где $e_{n_i} \in \mathscr{E}(2)$ таково, что $e_{n_i}(Z^n(O_1, 0)) =$ $=Z^{n}\left(O_{n_{i}},\phi_{n_{i}}\right)$, где $\left(O_{n_{i}},\phi_{n_{i}}\right)=\Phi\left(s_{n_{i}}\right)$. Следовательно, $\rho\left(G,e_{n_{i}}\left(p\left(A\right)\right)\right)<
ho_{0}$. Противоречие.

Аналогично получаем, что не существует точки $G' \in e_{\mathfrak{o}'}(p(A))$ такой, что $G' \not\equiv e_0(p(A))$. Следовательно, $e_0(p(A)) = e_0'(p(A))$. Противоречие.

Пусть $s_{\varphi} \in SO(3)$ — вращения A вокруг оси $\{(x,y,z)\colon x=0,y=0\}$ на углы φ , $0 \leqslant \varphi < 2\pi$. Рассмотрим окружность $S_0^1 = \bigcup\limits_{0 \leqslant \varphi < 2\pi} s_{\varphi}$. По определению отображения Φ имеем, что $\Phi|_{S_0}$ гомотопно отображению $\Phi_0 \colon S_0^1 \to S_0^1 \to S_0^1$ $-E^2 \times S^1$, где $\Phi_0(S_{\varphi}) = (0, n_{\varphi})$. Но $\pi_1(SO(3)) = Z_2$, $\pi_1(E^2 \times S^1) = Z$, а непрерывное отображение индуцирует гомоморфизм группы гомотопий. Так

как единственной подгруппой группы Z, гомоморфной Z_2 , является пулевая группа, а Φ_0 не гомотопно 0 (так как $n \neq 0$), приходим к противоречию.

Следовательно, p(A) удовлетворяет второму заключению леммы, из чего легко видеть, что $A = S^2 \cup V$, где V лежит внутри шара, ограниченно-

Замечание. Теорема остается справедливой, если определить кошгруэнтность следующим образом. $M \subseteq \hat{E}^2$ конгруэнтно $M' \subseteq \hat{E}^2$, если суще-

ствует изометрия $f: E^2 \to E^2$ такая, что M = f(M').

Следствие 1. Пусть $A \subseteq E^3$ — выпуклый компакт, для которого сушествует более чем одноточечное множество $B \subseteq E^2$ такое, что $Ve \in \mathscr{E}(3)$ существует единственное подмножество B_e границы множества pe(A);

конгруэнтное B. Тогда A есть шар.

3 амечание. Если не требовать $\forall e$ единственности множества B_e или не требовать, чтобы B_e принадлежало именно границе pe(A), то следствие неверно. Условие выпуклости компакта А может быть заменено условием, что все проекции А гомеоморфны кругу и что из сходимости проекций следует сходимость их границ.

Следствие 2. Пусть $B \subset E^2$ гомеоморфно кругу, но не является кругом. Пусть $A \subset E^3$ — компакт такой, что $\forall e \in \mathscr{E}(3)$ $\exists B_e$, конгруэнтное B и такое, что $B_0 \supset pe(A)$. Тогда $\exists e_0 \in \mathscr{E}(3)$, для которого $\exists B_{e_0}'$, кон-

груэнтное B и неравное B_{e_0} , такое, что $B_{e_0}' \supset pe_0(A)$.

Замечание. Если не требовать компактности множества А, то теорема неверна.

Пример 1. Существует $\forall \subseteq E^3$ такое, что $\forall e \in \mathscr{E}(3)$ ре(A) есть

открытый круг радиуса 1, а А гомеоморфно открытому кругу.

Замечание. Легко видеть, что если в условии теоремы 1 заменить

 $\mathscr{E}(3)$ произвольным множеством, всюду плотным в $\mathscr{E}(3)$, то теорема ос-

тается справедливой. В связи с этим имеет место

Пример 2. Пусть U — счетное всюду плотное в SO(3) множество. Существует $A \subseteq E^3$ такое, что $Ve \subseteq U$ pe(A) — открытый круг радиуса 1, а A гомеоморфно интервалу (0,1).

 Π ример 3. Существует $A \subset E^3$ такое, что $\forall e \in \mathscr{E}(3)$ ре(A) есть

открытый круг радиуса 1, A связно, $A \setminus (0,0,0)$ вполне несвязно.

Пусть $J = \{(x, 0, 0): x$ иррационально $\}, C = J \cup J + (\overline{0}, \overline{0}, 1) \cup J + (\sqrt{2}/\overline{4}, \overline{0}, \overline{2}).$ Легко видеть, что для каждой прямой $L \subset \{(x, y, z): y = 0\}$ такой, что $L \cap \{(x, 0, i): \sqrt{2}/4 < x < 1 - \sqrt{2}/4\} \neq \phi$, i = 0, 2, имеем, что $L \cap C \neq \phi$.

Пусть $P_m = \{(0, r, m): r \text{ рационально}, 0 < r < 1\}, m = 0, ..., 8, G —$

базис Гамеля для E^{i} , лежащий в интервале $(0, \sqrt{2}/4)$.

Существует $g_0 \in G$ такой, что $\forall j_0, j_1, j_2, j_0 = 0, 1, 2; j_1 = 3, 4, 5; j_2 = 6, 7, 8, <math>\forall$ прямой $L \subset \{(x, y, z): x = 0\}$ такой, что $L \cap \{(0, y, p): \sqrt{2}/4 < y < 1 - \sqrt{2}/4\} \neq \emptyset, p = 0, 8$, имеем, что хотя бы одно из пересече-

ний $P_{j_0} \cap L$, $P_{j_1} \cap L$, $(P_{j_1} + (0, g_0, 0)) \cap L$ пусто.

В самом деле, в противном случае $\exists j_0', j_1', j_2'$ такие, что $\exists G' \subset G$ такое, что G' несчетно (так как несчетное множество не может быть представленов виде объединения 27 счетных множеств) и $\forall g \in G'$ $\exists L_g \subset \{(x, y, z): x=0\}$, для которой $L_g \cap \{(0, y, p): \sqrt{2}/4 < y < 1 - \sqrt{2}/4\} \neq \phi$, p=0, 8, и все три пересечения непусты.

Пусть $P = \{(a^0, a^1): a^h \in P_{jh}, h = 0, 1\}$. Поставим в соответствие $g \in G'$ элемент $(a_g^0, a_g^1) \in P$ такой, что $L_g \ni a_g^h, h = 0, 1$. Это отображение $G' \to P'$ инъективно (так как в противном случае $\exists g_1, g_2 \in G'$ такие, что $g_1 - g_2 =$

 $= r_0$, где r_0 рационально), но P счетно. Противоречие.

Пусть $C_1 = C \times \{(0, y, 0) : y$ пррационально, $0 < y < 1\}$,

$$C_2 = C_1 + (\overline{0,0,3}), \quad C_3 = C_2 + (\overline{0,g_0,3}), \quad C' = C_1 \cup C_2 \cup C_3.$$

Легко видеть, что каждая прямая L такая, что

$$L \cap \left\{ (x, y, p) : \frac{\sqrt{2}}{4} < x < 1 - \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4} < y < 1 - \frac{\sqrt{2}}{4} \right\} \neq \phi, \quad p = 0, 8,$$

пересекает множество C'.

Пусть K_1 — подмножество канторова множества K в отрезке $[0, \frac{1}{2}]$, состоящее из точек, являющихся концами интервалов, удаленных при построении K. Пусть $K_2 = K \setminus K_1$. Пусть $Q_0(x)$ — отрезок [(x,0),(0,1)], где $x \in K$, а Q(x) — подмножество $Q_0(x)$, состоящее из точек с иррациональными ординатами, если $x \in K_1$, и состоящее из точек с рациональными ординатами, если $x \in K_2$.

Множество $Q=\bigcup_{x\in \mathcal{X}}Q(x)$ связно, но $Q\setminus (0,1)$ вполне несвязно (см. (1)).

Пусть $e \in \mathcal{E}(3)$ таково, что $e_0(0,1,0) = (0,0,0)$, $e_0(0,0,0) = (0,-1,0)$, $e_0(^1/_2,0,0) = (0,-1,-^1/_2)$. Пусть T — семейство трансляций E^3 такое, что $\bigcup_{t \in T} t(e_0(Q(0))) = C'$. Легко видеть, что существует непрерывное отображение $f \colon E^3 \to E^3$, тождественное на $\bigcup_{t \in T} t(e_0(Q) \cap \{(x,y,z)\colon x=0,\sqrt{2}/3 \leqslant y \leqslant 1, z=0\})$, являющееся гомеоморфизмом (на свой образ) на множестве $\bigcup_{t \in T} t(e_0(Q) \cap \{(x,y,z)\colon x=0,0 \leqslant y \leqslant \sqrt{2}/3, z=0\})$ и такое, что $f(\bigcup_{t \in T} t(0,0,0)) = (0,0,0)$.

Множество $B = f(\bigcup_{t \in T} te_0(Q))$ связно (так как является объединением связных множеств, пересечение которых есть (0, 0, 0)); $B \setminus (0, 0, 0)$

вполне несвязно (так как в противном случае либо существует компонента связности, содержащая точки b_1 и b_2 такие, что $f^{-1}(b_1)$ и $f^{-1}(b_2)$ лежат в разных плоскостях, параллельных $\{(x, y, z) \colon x = 0\}$ (тогда существует поверхность в E^3 , проходящая через (0, 0, 0), разделяющая b_1 и b_2), либо существует компонента связности B', содержащая две точки, причем $f^{-1}(B')$ лежит в плоскости, параллельной $\{(x, y, z) \colon x = 0\}$ (противоречие с вполне несвязностью $Q \setminus (0, 1)$).

Назовем кирпичом образ множества B при гомеоморфизме φ таком, что $\varphi(0, 0, 0) = (0, 0, 0)$, а сужение φ на $\bigcup_{t \in T} t(e_0/Q) \cap \{(x, y, z): x = 0, \sqrt{2}/3 < y < 1, z = 0\})$ есть композиция сжатий к координатным

плоскостям и трансляций Е. Множество

$$\varphi\left(\left(\bigcap_{t\in T}t\left(e_{0}\left(Q\left(0\right)\right)\right)\right)\cap\left\{\left(x,y,z\right):\frac{\sqrt{2}}{4}< x<1-\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{3}< y<1-\frac{\sqrt{2}}{4}\right\}\right)$$

будем называть ядром кирпича. Таким образом, всякая прямая, пересекающая верхнюю и нижнюю грани параллелепипеда, являющегося выпуклой оболочкой ядра кирпича, пересекает и само ядро.

Занумеруем множество пар (e, n), где $e \in U$ (U - счетное всюду)

плотное в SO(3) множество), n натуральное.

Для каждого натурального k $\exists \varepsilon_k > 0$ такое, чго существует конечное множество трансляций $t_0^{(k)}, \ldots, t_{n_k}^{(k)}$ пространства E^3 такое, что $P(\bigcup\limits_{i=0}^{n_k}t_i(\{(x,y,z):|x|<\varepsilon_k,|y|<\varepsilon_k,|z|<\varepsilon_k\}))\supset\{(x,y):x^2+y^2<(1-1/(k+1))^2\},$ причем $t_i(\{(x,y,z):|x|<\varepsilon_k,|y|<\varepsilon_k,|z|<\varepsilon_k\})\cap t_j(\{(x,y,z):|x|<\varepsilon_k,|y|<\varepsilon_k,|z|<\varepsilon_k\})\cap t_j(\{(x,y,z):|x|<\varepsilon_k,|y|<\varepsilon_k,|z|<\varepsilon_k\})\cap t_j(\{(x,y,z):|x|<\varepsilon_k,|y|<\varepsilon_k,|z|<\varepsilon_k\}))$ при $t_i=t_i$. Ук строим кирпичи $t_i=t_i$. Ук строим кирпичи $t_i=t_i$. В шаре $t_i=t_i$ ($t_i=t_i$) ($t_i=t$

Замечание. Все рассмотренные примеры могут быть модифицированы таким образом, чтобы проекции множеств A представляли собой пекруг, а плоскость E^2 .

Новосибирский государственный университет

Поступило 25 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ К. Куратовский, Топология, 2, М., 1969.