УДК 577.158

БИОХИМИЯ

В. П. НИЛОВА, М. А. ЗАРУБИНА, Т. А. ГУСЕВА, Г. П. НАУМОВ, С. Л. ЧЕРНИКОВ, С. В. КУЗНЕЦОВА

БЕЛКОВЫЙ ИНГИБИТОР ТИРОЗИНАЗЫ (о-ДИФЕНОЛОКСИДАЗЫ) ИЗ КЛУБНЕЙ КАРТОФЕЛЯ

(Представлено академиком Е. М. Крепсом 27 XI 1972)

Литературные сведения об ингибиторах ферментов в растениях в основном касаются группы гидролиза и лишь единичные сообщения свидетельствуют о существовании в растениях природных ингибиторов других ферментов, в частности оксидаз (¹). К последней группе относится белковый ингибитор тирозиназы (БИТ), впервые обнаруженный в составе актиномицета Neurospora crassa (²). Особенность БИТ состоит в том, что он по существу является апоферментом тирозиназы (о-дифенолоксидаза (о-ДФО); КФ 1.10.3.1) и отличается от нее отсутствием одного иона меди. Данных о выделении БИТ из тканей высших растений мы в литературе не встретили.

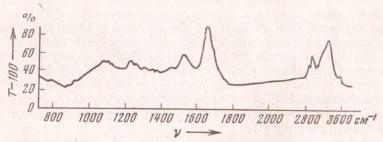


Рис. 1. И.-к. спектр поглощения БИТ

о-ДФО катализирует две различные по механизму реакции: 1) окисление о-дифенолов в о-хиноны (дифенолоксидазная активность) и 2) гидроксилирование некоторых монофенолов в о-дифенолы (монофенолоксидазная активность). В тканях картофеля присутствует высокоактивная о-ДФО. Эта ферментная система играет важную роль в защитных реакциях картофеля на любые повреждающие воздействия. Известна и значительная вариабельность активности этого фермента по сортам, под влиянием условий внешней среды и т. д. Сходство белкового носителя монофенолоксидазной активности о-ДФО с молекулой БИТ (2) побудило нас проверить, не обладают ли некоторые белковые компоненты клубней кар-

тофеля ингибиторной активностью.

Мы использовали принцип методики выделения БИТ из упомянутых выше грибов. Мезгу очищенных от кожуры клубней картофеля экстратировали десятикратным к весу объемом 0,04 М фосфатного буфера рН 8,15. Экстракцию проводили на холоду при встряхивании на качалке в течение 20 мин. Взвесь центрифугировали 15 мин. при 13 500 g. Надосадочную жидкость диализировали в течение 48 час. при компатной температуре сначала против водопроводной, а затем против дистиллированной воды. Смену воды проводили через сутки. Белок отделяли центрифугированием и лиофилизировали. Полученное нами вещество давало положительную биуретовую, ксантопротеиновую и нингидриновую реакции,

диазореакцию Паули и реакцию с Миллоновым реактивом, что подтверди-

ло его принадлежность к соединениям белковой природы.

Для определения ингибиторных свойств 1 мг лиофилизированного порошка БИТ растворяли в 100 мл 0,04% двууглекислого натрия. Последовательным разведением концентрацию БИТ доводили до 1 µг/мл. Об активности препаратов БИТ судили по его влиянию на монофенолоксидазную активность о-ДФО клубней картофеля, которую определяли спектрофотометрическим методом (8). Субстратами служили n-крезол и l-тирозии. До введения субстрата в реакционную смесь ферментную вытяжку инкубировали с раствором БИТ в течение 60 мин.

Состав золы препарата БИТ

Таблица 1

№ п.п.	Элемент	Количество, %	№ п.п.	Элемент	Количество, %		
1 2 3 4 5 6 7	Кремний Алюминий Магний Кальций Железо Кобальт Титан	1—3 1—3 Основа ** 1—3 0,001—0,003 0,001—0,003	8 9 10 11 12 13	Медь Серебро Барий Натрий Калий Фосфор	0,01—0,03 Следы 0,03—0,1 >3 >3 >3		

Установлено, что препараты БИТ, выделенные из клубней картофеля, способны ослабить монофеполоксидазную активность о-ДФО, свойственную этим клубням. БИТ из клубней устойчивого к фитофторе сорта картофеля Гатчинский подавляли монофенолоксидазную активность о-ДФО этих же клубней несколько сильнее, чем ингибитор из клубней восприимчивого сорта Берлихинген свой фермент: на 14,2 и 9,0% соответственно.

Результаты прямых испытаний подтвердили, что апофермент о-ДФО является эффективным БИТ. При протекании монофенолоксиданой реакции о-ДФО добавление в реакционную среду БИТ значительно удлиняет индук-

ционный период реакции (4).

Учитывая, что в выделенных препаратах БИТ может присутствовать значительное количество посторонних примесей, была проведена дополинтельная очистка этого вещества. Диализ против дистиллированной воды проводили с трехкратной сменой ее. После центрифугирования осадок

Таблица 2 ^л Основные полосы и.-к. поглощения БИТ

∨, CM ⁻¹	Отпесение					
1080 1230 1450 1520 1650 2850 2870 2925 2955 3280 3565	ν C-N; ν C-O-C 1 P-O-C (ар.); C-O (ацет.) δ -CH ₃ NH (втор). C=O амид; ν C-N соли гуанидина ν -CH ₂ - ν _g -CH ₃ =CH ₃ ; ν _{αs} -CH ₃ ν _{αs} -CH ₃ N N C+-N соли гуанидина; ОН; NH					

П ру́и м е́чание. ν — валентные колебания ν_s — валентная симметрия; ν_{as} — валентная асимметрия; δ — деформационные колебания.

суспензировали в дистиллированной воде с капроновым порошком, дважды промывали бидистиллятом при повторном дентрифугировании и лиофилизировали. Данные спектрального анализа очищенных препаратов БИТ приведены в табл. 1. Кроме указанного общего состава катионов в препаратах БИТ, выделенных из клубней картофеля сорта Берлихинген, был обнаружен еще и хром в количестве 0,001% в пересчете на золу. Активность очищенных препаратов БИТ проверяли спектрофотометрически. Концентрация лиофильно высушенного ингибитора в этих опытах составляла 0,4 мг на 1 мл буферного раствора. Конечная концентрация субстратов $1,2\cdot 10^{-3}$ M. Под влиянием этих сравнительно очищенных препаратов монофенолоксидазная активность o-ДФО клубней картофеля снижалась по сравнению с исходной: по сорту Берлихинген на 12,5%, по сорту Гат-

чинский на 22,5%.

Таким образом, показано, что дополнительная очистка белкового препарата, выделенного из клубней картофеля, не только не снижает, а наоборот, усиливает его ингибиторные свойства. Аналогичные результаты были получены и при определении активности БИТ полярографическим методом с «кислородным электродом». Следует подчеркнуть, что ингибиторные свойства выделенных из клубней картофеля белковых препаратов

Таблица 3

Аминокислотный	состав	БИТ
----------------	--------	-----

Аминокислота	Количество, имол	Молярный %	Аминокислота	Количество, рмол	Молярный %	Аминокислота	Количество, рмол	Молярный %
Аспарагиновая Треонин Серин Пролин Глутаминовая Глицин	1,374 0,585 0,765 0,336 1,467 1,162	10,872 4,608 6,026 2,647 11,558 9,154	Аланин Цистин Валин Метионин Изолейцин Лейцин	0,791 Следы 0,819 0,080 0,598 1,045		Тирозин Фенилаланин Лизин Гистидин Аргинин	0,395 0,827 0,846 0,181 0,463	3,111 6,615 6,665 1,425 3,648

проявляются только в отношении монофенолоксидазной активности *о-*ДФО. На дифенолоксидазную активность *о-*ДФО (субстрат пирокатехии), определяемую разными методами, БИТ влияния не оказывает.

Степень гомогенности БИТ из клубней картофеля п бпологическая активность его компонентов определены гель-хроматографией. На колонках с

сефадекесами g-50 и g-75 установлено, что данное вещество в основном состоит из двух компонентов. Первый компонент, адсорбируемый сефадексом g-75, имеет максимум поглощения при 258 ми, втсрой, адсорбируемый сефадексом g-50, - при 260 мµ. Оба компонента имеют минимум поглощения в у.-ф. при 250 мµ. Используя сефадексы g-75 и g-100 и пепсин для калибровки, методом вискозиметрии определен м.в. изучаемого вещества (5). Он оказался ~34000, что соответствует м.в. мономера о-ДФО. Последнее обстоятельство чрезвычайно важно и интересно. При испытании биологической активности обоих компонентов обнаружилось, что ингибиторные свойства в отношении монофенолоксидазной активности о-ДФО проявляются только в том случае, если в реакционной смеси находятся оба компонента.

И.-к. спектр суспензированного препарата БИТ в области 400—5000 см⁻¹ приведен на рис. 1. В спектре обнаружена 31 полоса. Большинство полос имеют очень слабую интенсивностть и идентифицировать их в настоящее время невозможно. Дапные по питерпретации более сильных полос сведены в табл. 2.

Измерения показали наличие у ингибитора сильного свободнорадикального (с.р.) сигнала э.п.р. Интенсивности этих сигналов и количество

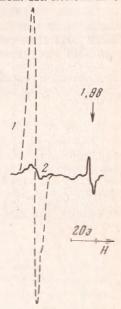


Рис. 2. Свободнорадикальный сигнал БИТ, не обработанного (1) и обработанного (2) FeCl₃. Стрелкой отмечен g-фактор четвертой линии стандарта Mn²⁺ / MgO

с.р. в образцах БИТ, выделенных из клубней иммунологически различных сортов картофеля, не одинаковы. При равной навеске препарата в 10 мг интенсивность с.р. сигнала БИТ, выделенного из клубней восприимчивого фитофторе картофеля сорта Берлихинген, составляла 150 отн. ед.,

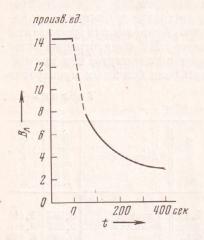


Рис. 3. Кинетика изменения интецсивности люминесценции БИТ при введении в раствор CuCl₂ в момент t=0

а у препарата из клубней картофеля устойчивого сорта Гатчинский 190 отн. ед. Обнаружено также, что при обработке БИТ из клубней картофеля сорта Берлихинген FeCl₃ интенсивность с.р. сигнала ослабляется в 20 раз (рис. 2), а после обработки этого ингибитора CuCl₂ с.р. сигнал не проявляется. В последнем случае зарегистри-

рован сигнал э.п.р. от иона Cu²⁺.

При облучении у.-ф. лучами водный раствор БИТ люминесцирует в видимой области спектра. KJ, K₃Fe(CN)₆ и KSCN гасят люминесценцию практически мгновенно. Гашение, вызываемое ионами Cu2+ и Fe³⁺, развивается во времени относительно медленно (рис. 3), что означает наличие химического взаимодействия между этими ионами и БИТ из клубней картофеля. Люминесцепция БИТ свидетельствует о призутствии в его молекуле гетероциклических соединений. Оценка, проведенная по м.в. и поглощению в у.-ф. области, показала, что

в молекуле БИТ на долю бензольных колец может приходиться не более 20% от м.в. ингибитора. Аминокислотный состав препаратов БИТ из клубней картофеля (табл. 3) удовлетворительно совпадает с составом самого фермента о-ДФО грибов (6) и особенно о-ДФО клубней картофеля (7).

Таким образом, полученные результаты позволяют предположить связь величины активности о-ДФО клубней картофеля с функционированием БИТ и со степенью устойчивости картофеля к патогенам. Возможно, что БИТ выступает еще и как латентная форма о-ДФО.

Всесоюзный научно-исследовательский институт защиты растений Ленинград

Поступило 18 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ E. Libbert, R. Schröder, A. Drawert, Biochem. Physiol. Pflanzen, 161, № 4, 340 (1970). ² E. Frieden, M. Ottesen, Biochim. et biophys. acta, 34, № 1, 248 (1959). ³ M. Mayer, Enzymologia, 16, № 5, 277 (1954). ⁴ J. Karkhanis, E. Frieden, J. Biol. Chem., 236, № 1, PC 1 (1961). ⁵ Д. М. Спитковский, Биофизика, 3, в. 4, 396 (1958). ⁶ S. Bouchilloux, P. McMahill, H. S. Mason, J. Biol. Chem., 245, № 7, 1613 (1970). ⁷ K. Balasingam, W. Ferdinand, Biochem. J., 118, № 1, 15 (1970).