УДК 517.537

MATEMATUKA

Академик АН АзербССР И. И. ИБРАГИМОВ, Н. И. НАГНИБИДА

НЕСКОЛЬКО ЗАМЕЧАНИЙ О ПОЛНОТЕ СИСТЕМЫ

 $\{f(\alpha_k z)\}_{k=0}^{\infty}$

Через A_R , $0 < R \le \infty$, обозначим пространство всех однозначных и аналитических в круге |z| < R функций с обычной топологией (т. е. топологией компактной сходимости) (1). Отметим далее, что вопросу полноты в пространствах A_R (а также и в других аналитических пространствах) систем функций вида $\{f(\alpha_k z)\}_{k=0}^{\infty}$ посвящена обширная литература (см., например, соответствующие работы А. О. Гельфонда, А. И. Маркушевича, И. И. Ибрагимова, Б. Я. Левина и других математиков). Вполне естественно, что во всех известных результатах о полноте таких систем существенно используются различные свойства последовательности $\{\alpha_k\}_{k=0}^\infty$

В этой заметке рассматривается вопрос о полноте в пространствах $A_{\mathtt{R}}$ системы $\{f(\alpha_k z)\}_{k=0}^{\infty}$ в предположении, что f(z) — целая функция (т. е. $f(z) \in A_{\infty}$) порядка ρ и типа σ $(0 < \rho, \sigma < \infty)$, а числа последовательности $\{\alpha_k\}_{k=0}^{\infty}$ псчерпывают все нули другой целой функции g(z), порядок и тип которой обозначим соответственно через ρ_i и σ_i ($0 < \rho_i$, $\sigma_i < \infty$). Наша задача — нахождение различных соотношений между числами р, о, р₁, о₁, при которых $\{f(\alpha_k z)\}_{k=0}^{\infty}$ является полной или же неполной в A_R . Поэтому естественно, что в получаемых утверждениях свойства последовательности $\{\alpha_{k}\}_{k=0}^{\infty}$ фигурировать уже не должны.

Заметим вначале, что мы впредь будем требовать, чтобы все тейлоровские коэффициенты f_n функции f(z) были отличными от нуля, поскольку это условие необходимо для полноты системы $\{f(\alpha_h z)\}_{k=0}^{\infty}$ в пространствах $A_{\scriptscriptstyle R}$. Кроме того, в некоторых случаях нам приходится предполагать также существование предела

$$\lim_{n\to\infty} n^{1/p} |f_n|^{1/n} = (\sigma e \rho)^{1/p}. \tag{*}$$

Положим $\gamma_n = g_n/f_n$, $n = 0, 1, \ldots$; здесь g_n — тейлоровские коэффициенты функции g(z). Легко подсчитать, что при выполнении условия (*)имеют место следующие равенства:

$$\overline{\lim_{n\to\infty}} |\gamma_n|^{1/n} = \begin{cases} 0, & \rho_1 < \rho, \\ (\sigma_1/\sigma)^{1/\rho}, & \rho_1 = \rho. \end{cases}$$

Следовательно, с помощью последовательности $\{\gamma_n\}_{k=0}^{\infty}$ можно построить $(^2)$ линейный непрерывный в A_R (R- произвольное при $ho_1 <
ho$ и $R > (\sigma_1/\sigma)^{1/\rho}$ при $\rho_1 = \rho$) функционал, аннулирующийся на всех функциях системы $\{f(\alpha_n z)\}_{k=0}^{\infty}$. Поэтому мы легко убеждаемся в справедливости следующих двух утверждений.

Теорема 1. Если $\rho_1 < \rho$ и выполнено условие (*), то $\{f(\alpha_k z)\}_{k=0}^{\infty}$ не полна ни в одном из пространств $A_R, 0 < R \le \infty$.

Например, если условие (*) выполняется для целой функции f(z) первого порядка нормального типа, то система $\{f(n^2z)\}_{k=0}^{\infty}$ не является полной ни в одном из пространств A_R , $0 < R \le \infty$ (в этом случае можно положить $g(z) = \frac{\sin \pi \ \sqrt{z}}{\sqrt{z}}$).

Теорема 2. Если $\rho_1 = \rho$ и выполнено условие (*), то система $\{f(\alpha_k z)\}_{k=0}^{\infty}$ не полна ни в одном из пространств A_R , для которых $R > (\sigma_1/\sigma)^{1/\rho}$.

Замечание 1. Очевидно, что если $\{\alpha_k\}_{k=0}^{\infty}$ — нули целой функции f(z), то система $\{f(\alpha_k z)\}_{k=0}^{\infty}$ также не может быть полной хотя бы в одном из пространств A_R с $R \ge 1$ ни при каких дополнительных условиях.

Замечание 2. Известно $\binom{3}{3}$, что если f(z) — целая функция первого порядка и типа σ , то система $\{f(nz)\}_{k=0}^{\infty}$ полна в каждом A_R с $R \leq \pi / \sigma$. Полагая $g(z) = \sin \pi z$, мы убеждаемся в том, что при выполнении условия (*) $R = \pi / \sigma$ является в то же время максимальным радиусом полноты рассматриваемой системы.

Как видно из теоремы 2, при $\rho_1 = \rho$ остается открытым вопрос о полноте системы $\{f(\alpha_k z)\}_{k=0}^{\infty}$ лишь в тех пространствах A_R , для которых $R \leq (\sigma_1/\sigma)^{1/\rho}$, хотя кажется вполне вероятным, что ответ на него (покрайней мере для дробных ρ) должен быть положительным. В пользу этой гипотезы говорит, например, следующее утверждение (по этому поводу

см. (4), стр. 284).

Теорема 3. (Б. Я. Левин). Пусть последовательность $\{\alpha_k\}_{k=0}^{\infty}$ образует правильное множество, а g(z) совпадает с его канонической функцией и имеет постоянный индикатор.

Тогда система $\{f(\alpha_k z)\}_{k=0}^{\infty}$ полна в каждом пространстве A_k с $R \leq$

 $\leq (\sigma_1/\sigma)^{1/\rho}$.

Любонытным в связи с этой проблемой кажется и такой результат.

Теорема 4. Если $\rho - \partial p$ обное число, $\rho_1 = \rho$ и $\sigma = 0$ (a $\sigma_1 \neq 0$), то система $\{f(\alpha_k z)\}_{k=0}^{\infty}$ полна в каждом пространстве A_R , $0 < R \leq \infty$.

Доказательство. Пусть некоторый линейный непрерывный в пространстве A_R , $0 < R < \infty$, функционал анпулируется на всех функциях системы $\{f(\alpha_k z)\}_{k=0}^{\infty}$. Это равносильно (2) существованию такой последова-

тельности
$$\{\gamma_n\}_{n=0}^\infty,\ \overline{\lim_{n\to\infty}}\ |\gamma_n|^{1/n}=\gamma < R,\$$
что $\sum_{n=0}^\infty f_n\gamma_n\alpha_k^n=0,\ k=0,1,\dots$ От-

сюда следует, что функция
$$\varphi(z)=\sum_{n=0}^{\infty}f_n\gamma_nz^n$$
 целая, ее порядок $\widetilde{\rho}$ либо

меньше ρ , либо равен ρ , но тогда тип $\bar{\sigma} \leq \sigma \gamma^{\rho} = 0 < \sigma_1$. Кроме того, $\phi(\alpha_h) = 0$, $k = 0, 1, \ldots$ Но так как ρ_1 — дробное число, порядок ρ_1 функции g(z) совпадает с показателем τ сходимости ее нулей ((4), стр. 39). Поэтому из очевидных соотношений $\bar{\rho} \geq \bar{\tau} \geq \tau = \rho_1 = \rho \geq \bar{\rho}$, где $\bar{\tau}$ — показатель сходимости нулей функции $\phi(z)$, следует, что $\bar{\rho} = \rho$ и, таким образом, $\bar{\sigma} = 0$.

Предполагая, далее что $\varphi(z) \not\equiv 0$ (это условие равносильно неполноте системы $\{f(\alpha_h z)\}_{k=0}^\infty$), рассмотрим целую функцию $h(z) = \varphi(z) / g(z)$, т. е. положим $\varphi(z) = g(z) \cdot h(z)$. Так как ((4), стр. 27) верхняя плотность Δ_{φ} нулей функции $\varphi(z)$ подчинена условию $\Delta_{\varphi} \leqslant e^\rho \bar{\varsigma}$, то $\Delta_{\varphi} = 0$. Поэтому, учитывая очевидное неравенство $\Delta_g \leqslant \Delta_{\varphi}$, мы должны заключить, что также $\Delta_g = 0$ и тем самым ((4), стр. 64) функция g(z) должна иметь минимальный тип. Последнее же приводит к противоречию, поскольку $\sigma_1 > 0$. Теорема доказана.

Обратимся еще к случаю $\rho_1 > \rho$. Если ρ_1 — дробное, то при любом R, $\theta < R < \infty$, тождество $\varphi(z) \equiv 0$ (см. доказательство теоремы 4) сразу

следует из соотношений $\tilde{\tau} \geqslant \tilde{\tau} = \rho_1 > \rho \geqslant \tilde{\rho}$. Следовательно, верна

Теорема 5. Если $\rho_1 - \partial p o b h o e число и <math>\rho_1 > \rho$, то система $\{f(\alpha_k z)\}_{k=0}^{\infty}$ полна в каждом пространстве A_R , $0 < R \le \infty$.

Что же касается случая ρ₁ ≥ ρ при целом ρ₁, то эта ситуация намного сложнее, и дать определенный ответ на вопрос о полноте системы

 $\{f(\alpha_k z)\}_{k=0}^{\infty}$ невозможно. Действительно, умножая функцию g(z) на $\exp(p(z))$, где p(z) — некоторый многочлен, мы получим новую целую функцию $\psi(z)$ с теми же нулями $\{\alpha_k\}_{k=0}$. Но порядок ρ_{ψ} функции $\psi(z)$ будет, вообще говоря, отличным от ρ_1 . Поэтому, например, может случиться так, что хотя $\rho_1 \geqslant \rho$, но $\rho_{\psi} < \rho$, и система $\{f(\alpha_k z)\}_{k=0}^{\infty}$ не полна при выполнении условия (*) ни в одном из A_R , $0 < R \leqslant \infty$, или же ρ_{ψ} будет одновременно дробным и большим, чем ρ , а соответствующая система — полной в любом A_R , $0 < R \leqslant \infty$. Поэтому, не прибегая к помощи других величин, кроме ρ , σ , ρ_1 и σ_1 , формулировать теоремы о полноте системы $\{f(\alpha_k z)\}_{k=0}^{\infty}$ в случае целого ρ_1 и $\rho_1 \geqslant \rho$ нельзя.

Институт математики и механики Академии наук АзербССР Баку Черновицкий государственный университет

Поступило 15 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Köthe, J. reine u. angew. Math., 191, 30 (1953). ² A. И. Маркушевич, Матем. сборн., 17, № 2, 211 (1945). ³ А. О. Гельфонд, Матем. сборн., 4 (46), 1, 149 (1938). ⁴ Б. Я. Левин, Распределение корней целых функций, М., 1956.