УДК 512 + 519.4

MATEMATUKA

В. Г. ДУРНЕВ

позитивная теория свободной полугруппы

(Представлено академиком П. С. Новиковым 26 Х 1972)

Формула узкого исчисления предикатов с равенством, имеющая предваренную дизъюнктивную нормальную форму без отриданий, называется позитив но й. В настоящей работе рассматриваются позитивные формулы на свободных полугруппах. Предполагается, что сигнатура содержит знак полугрупповой операции и множество образующих полугруппы, выделенных в качестве констант. Ю. И. Хмелевский (1) построил алгоритм, позволяющий для любой позитивной формулы Φ с константами a_1, a_2, \ldots, a_n и с приставкой типа Ξ^3 определить, истинна ли формула Φ на свободной полугруппе с образующими a_1, a_2, \ldots, a_n .

Основной результат настоящей работы составляет следующая

Теорема 1. Не существует алгоритма, позволяющего для произвольной формулы Φ вида

$$(\exists x_1)(\forall y)(\exists x_2x_3x_4)\left(\bigvee_{i=1}^{15}w_i=v_i\right),$$

где w_i , v_i — слова в алфавите $\{x_1, x_2, x_3, x_4, y, a_1, a_2, a_3\}$, определить, истинна ли формула Φ на свободной полугруппе с образующими a_1, a_2, a_3 .

Знак \equiv будет означать далее графическое равенство, знак \rightleftharpoons равенство по определению; $G = \langle a_1, a_2; A_1 = B_1, \ldots, A_n = B_n \rangle$ — конечно-определенная полугруппа, заданная образующими a_1, a_2 и определяющими соотношениями $A_1 = B_1, \ldots, A_n = B_n$, и при любом i слова A_i, B_i непустые; $\Pi_m = \langle a_1, \ldots, a_m \rangle$ — свободная полугруппа с образующими a_1, \ldots, a_m . Если V_1, V_2 — слова из Π_2 , то $V_1^{\overline{G}}$ V_2 означает, что V_1 равно V_2 в полугруппе G.

$$A_{n+j} \rightleftharpoons B_{j}, \quad B_{n+j} \rightleftharpoons A_{j}, \quad j = 1, 2, \dots, n;$$

$$\mathfrak{A}_{1}(w, z, x_{1}, x_{2}, x_{3}) \rightleftharpoons \left(\left(\bigvee_{\substack{i,j=1\\i \neq j}}^{3} (w = x_{1}a_{i}x_{2} \& z = x_{1}a_{j}x_{3}) \right) \bigvee z = wx_{1} \right),$$

$$\mathfrak{A}(w, y, x_{1}, x_{2}, x_{3}, z) \rightleftharpoons \left(\mathfrak{A}_{1}(w, z, x_{1}, x_{2}, x_{3}) \bigvee \left(\bigvee_{i=1}^{2} w = za_{i}x_{1} \right) \bigvee \left(\bigvee_{i=1}^{2n} w \ a_{3}ya_{3} = za_{3}x_{1}A_{i}x_{2}a_{3}x_{1}B_{i}x_{2}a_{3}x_{3} \right) \right),$$

$$P_{G}(x, y) \rightleftharpoons (\exists x_{0}) (\forall z) (\exists x_{1}x_{2}x_{3}) \mathfrak{A}(a_{3}xa_{3}x_{0}, y, x_{1}, x_{2}, x_{3}, z).$$

 Π емма 1. Если V_1 , V_2 — непустые графически неравные слова из Π_2 , то $V_{1G}V_2$ тогда и только тогда, когда формула $P_G(V_1, V_2)$ истинна на полугруппе Π_3 .

Доказательство. Если W, Z — слова из Π_3 и W непусто, то формула $(\exists x_1x_2x_3)\mathfrak{A}_1(W, Z, x_1, x_2, x_3)$ истинна на полугруппе Π_3 тогда и только тогда, когда слово Z не является собственным началом слова W.

Пусть V_1 , V_2 — непустые графически неравные слова из Π_2 и $V_{16}^{-}V_2$. В полугруппе Π_2 существует такая последовательность слов Y_0 , Y_1 , ..., Y_m , что для любого i, $0 \le i \le m-1$, найдутся такое j и слова X_1 , X_2 , что $Y_i = X_1A_2X_2$, $Y_{i+1} = X_1B_2X_2$ (считаем, что $m \ge 3$), и $Y_0 = V_1$, $Y_m = V_2$.

Возьмем $X_0 = Y_1 a_3 Y_2 a_3 \dots a_3 Y_{m-1}$. Покажем, что на полугруппе Π_3 истинна формула

 $(Vz) (\exists x_1x_2x_3) \mathfrak{A}(a_3V_1a_3X_0, V_2, x_1, x_2, x_3, z).$

 Π усть Z — произвольное слово из Π_3 . Если на Π_3 формула

$$(\exists x_1x_2x_3)\Big(\mathfrak{A}_1(a_3V_1a_3X_0,Z,x_1,x_2,x_3)\bigvee\Big(\bigvee_{i=1}^2a_3V_1a_3X_0=Za_ix_1\Big)\Big)$$

ложна, то найдется такое Y, что $a_3V_1a_3X_0 \equiv Za_3Y$, такие числа t, j слова X_1 , X_2 , X_3 , что $a_3V_1a_3X_0a_3V_2a_3 \equiv Za_3Y_ta_3Y_{t+1}a_3X_3$ и $Y_t \equiv X_1A_jX_2$, $Y_{t+1} \equiv X_1B_jX_2$. Поэтому на Π_3 истинна формула

$$(\exists x_1x_2x_3)\mathfrak{A}(a_3V_1a_3X_0, V_2, x_1, x_2, x_3, Z).$$

Так как Z — произвольное слово из Π_3 , то на Π_3 истинна формула $P_G(V_1, V_2)$. Обратно, если V_1, V_2 — такие непустые слова, что формула $P_G(V_1, V_2)$ истинна на Π_3 , то нетрудно показать, что в полугруппе Π_2 найдутся такие непустые слова $Z_1, \ldots, Z_m, m \geqslant 3$, что $a_3V_1a_3X_0a_3V_2a_3 \equiv a_3Z_ma_3Z_{m-1}a_3\ldots a_3Z_1a_3$ и $Z_m \equiv V_1, Z_1 \equiv V_2$. Пусть при любом t, удовлетноряющем неравенствам $1 \leqslant t < t \leqslant m$, $Z_{iG}Z_1$; покажем, что тогда $Z_{iG}Z_1$. Возьмем $Z = a_3Z_ma_3\ldots a_3Z_{t+1}$ при m > t и Z — пустое слово при m = t. Тогда $a_3V_1a_3X_0 \equiv Za_3Y$ при некотором Y, поэтому формула

$$(\exists x_1x_2x_3)\left(\mathfrak{A}_1(a_3V_1a_3X_0,\,Z,\,x_1,\,x_2,\,x_3)\,\bigvee\left(\bigvee_{i=1}^2a_3V_1a_3X_0=Za_ix_1\right)\right)$$

ложна на Π_3 , значит, найдутся такие слова X_1 , X_2 , X_3 и число i, что $a_3V_1a_3X_0a_3V_2a_3$ $\equiv Za_3X_1A_iX_2a_3X_1B_iX_2a_3X_3$.

1) Если в слова X_1 , X_2 не входит буква a_3 , то $Z_t = X_1 A_1 X_2$, $Z_{t-1} = X_1 B_1 X_2$, тогда $Z_{tG} = Z_{t-1}$, а так как $Z_{t-1G} = Z_t$, то $Z_{tG} = Z_t$.

2) Если в X_i входит буква a_3 , то найдется l < t такое, что $Z_t \equiv Z_i$ и

опять $Z_{tG} = Z_1$.

3) Если в X_1 не входит буква a_3 , но $X_2 = X_\pi a_3 X_\pi$ и в X_π не входит a_3 , то найдется l < t такое, что $Z_t = X_1 A_i X_\pi$, $Z_t = X_1 B_i X_\pi$ и опять $Z_t = Z_1$. Лемма 1 доказана.

Взяв в качестве G конечно-определенную полугруппу с тремя определяющими соотношениями с неразрешимой проблемой тождества, получим доказательство теоремы 1.

Спмвол (Vz < w) означает «для каждого z, являющегося

собственным началом w,...».

$$\mathfrak{B}(w, z, x_0, x_1, x_2, x_3, x, y) \rightleftharpoons \left(w = a_3 x a_3 x_0 \& \left(\left(\bigvee_{i=1}^2 w = z a_i x_1\right) \lor \left(\bigvee_{i=1}^{2n} w a_3 y a_3 = z a_3 x_1 A_i x_2 a_3 x_1 B_i x_2 a_3 x_3\right)\right)\right),$$

$$P_G^1(x, y) \rightleftharpoons (\exists w) (\forall z < w) (\exists x_0 x_1 x_2 x_3) \, \mathfrak{B}(w, z, x_0, x_1, x_2, x_3, x, y).$$

Лемма 2. Если V_1 , V_2 — непустые графически неравные слова из Π_2 , V_3 V_2 тогда и только тогда, когда $P_{g}^{-1}(V_1, V_2)$ истинна на полугруппе Π_3 . Доказательству леммы 1.

Если X — слово из Π_3 , то $\partial(X)$ — длина слова X, $\varphi(X,i)$ (при $0 \le i \le$

 $\leq \delta(X)$) — начало длины i слова X.

Теорема 2. Не существует алгоритма, позволяющего для произвытьной дизьюнкции уравнений $\Psi(w, z, x_1, x_2, x_3, x_4)$ вида $\Psi(w, z, x_1, x_2, x_3, x_4)$ вида $\Psi(w, z, x_1, x_2, x_3, x_4)$ $= x_1 = x_2 = x_3 = x_4 =$

$$\Psi(W, \varphi(W, 0), x_{01}, \ldots, x_{0k}), \Psi(W, \varphi(W, 1), x_{11}, \ldots, x_{1k}), \dots, Y(W, \varphi(W, l), x_{l1}, \ldots, x_{lk}),$$

 $\partial e \ l \Rightarrow \partial(W) - 1$, имеет решение x_{01}, \ldots, x_{l4} в Π_3 .

Доказательство сразу получается из леммы 2, если взять *G* с неразрешимой проблемой тожлества.

 Π_3^* — свободная полугруппа без пустого слова с образующими a_1 , a_2 , a_3 . Теорема 3. Не существует алгоритма, позволяющего для произвольной позитивной формулы без констант Φ с приставкой типа Π_3^* Π_3^* определить, истинна ли Π_3^* .

Теорема 3 доказывается аналогично теореме 1. Интересно отметить, что для позитивных формул без констант с приставками типа $\mathbf{I}^m \mathbf{V}$; $\mathbf{V} \mathbf{I}^m$, где m — любое натуральное число, существует алгоритм, решающий воп-

рос об истинности этих формул на полугруппе Π_3^* .

Теорема 4. При m > n существует алгоритм $\mathfrak{A}_{m,n}$, который по произвольной формуле $\Phi(x_1,\ldots,x_l)$ с единственными свободными переменными x_1,\ldots,x_t и с константами a_1,\ldots,a_m строит позитивную формулу $\mathfrak{A}_{m,n}(\Phi)(x_1,\ldots,x_l)$ с теми же самыми свободными переменными x_1,\ldots \ldots,x_l и с константами a_1,\ldots,a_n такую, что для произвольных слов X_1,\ldots \ldots,X_l из Π_m : формула $\Phi(X_1,\ldots,X_l)$ истинна на Π_m тогда и только тогда, когда формула $\mathfrak{A}_{m,n}(\Phi)(\phi X_1,\ldots,\phi X_l)$ истинна на Π_n , где ϕ — вложение полугруппы Π_m в полугруппу Π_2 , при котором $\phi a_i = a_2 a_1^i a_2$.

При любом $n \ge 2$ и любом m можно построить такую позитивную формулу $F(x; v_1, \ldots, v_m)$ с константами a_1, \ldots, a_n и со свободными переменными x, v_1, \ldots, v_m , что для произвольных непустых слов V_1, \ldots, V_m полугруппы Π_n : слово X полугруппы Π_n принадлежит подполугруппе полугруппы Π_n , порожденной словами V_1, \ldots, V_m тогда и только тогда, когда

формула $F(\varphi X; \varphi V_4, ..., \varphi V_m)$ истинна на полугруппе Π_n .

В позитивной теории полугруппы Π_2 выразимы следующие свойства конечно определенной полугруппы: «быть конечной», «быть хопфовой», «быть простой группой», для пары конечно определенных полугрупп: «быть изоморфными полугруппами».

Тульский педагогический институт им. Л. Н. Толстого

Поступило 24 X 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. И. Хмелевский, Уравнения в свободной полугруппе, Тр. матем. инст. АН СССР, **107** (1971).