УДК 550.89

ПЕТРОГРАФИЯ

Г. Т. ОСТАПЕНКО, Ю. И. ГОНЧАРОВ, И. П. ХАДЖИ, В. С. КОВАЛЕНКО

ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА МИНЕРАЛООБРАЗОВАНИЯ В УСЛОВИЯХ ПЛАСТИЧЕСКОГО ТЕЧЕНИЯ ПРИ НЕГИДРОСТАТИЧЕСКОМ НАПРЯЖЕНИИ

(Представлено академиком Д. С. Коржинским 20 І 1972)

Многочисленные геофизические, петрологические и тектонические данные свидетельствуют о том, что в земной коре, особенно в се активных зонах, состояния негидростатического напряжения с сопутствующими им деформациями представляют собою скорее, обычное явление, чем исключение (¹,²). Поэтому всестороннее исследование, в том числе при помощи экспериментального моделирования, процесса возникновения минералов и их превращения в условиях негидростатики является актуальной задачей. Особый интерес эти работы представляют в связи с проблемой ориснтировки минералов в поле напряжения, термодинамическая разработка которой до настоящего времени содержит ряд дискуссионных положений (³-¹), а имеющиеся экспериментальные результаты (³-¹) хотя и очень важны, однако немногочисленны и касаются вопроса ориентировки, по сути, кальнита и в меньшей мере кварпа.

В проводившихся нами опытах состояние негидростатического напряжения (сжатия) осуществлялось простым способом Адамса — Никольсона (11). Спрессованные таблетки весом 20 г из смеси MgO, MgF₂, NaF и аморфного кремнезема *, отвечающей по составу фторрихтериту (Na₂Mg₆[Si₈O₂₂]·F₂), помещали в тонкостенный цилиндр из нержавеющей стали (внутренний диаметр 24, наружный 30 мм), сжимали на прессо поршнями из стали ЭИ-437Б до заданной величины «осевого» давления (P_1), за 2—3 часа нагревали до заданной температуры (T) и выдерживали при T и P_1 от 16 до 47 час. В процессе опыта происходило расплющивание таблетки, она пластически «текла» в направлении к боковым степкам цилиндра, вызывая их раздув. Боковое давление P_2 , оказываемое стенкой камеры на таблетку, может быть оценено, если известен предел прочиости на растяжение стали при данной температуре (11). Характеристика и параметры опытов приведены в табл. 1.

Таблетки в процессе опытов сильно уплотнялись, приобретая сланцеватую текстуру перпендикулярно P_1 . В шлифах из полученных образцов (рис. 1) наблюдается тонкое чередование линз микрогранобластового кварца и тонкодисперсного материала. Полосчатость перпендикулярна осевому давлению и создает видимую сланцеватость. В выдавленной части таблетки прожилки и линзочки закручиваются, образуя завихрения. Рентгенодифракционным анализом (ДРОН-1, СиК-излучение, Ni-фильтр) в образдах обнаружены следующие минеральные фазы: 1) кварц, диагносцируемый по паре интенсивных отражений с межплоскостным расстоянием 3,36 и 4,25 Å; 2) амфибол,— по характерному для него межплоскостному расстоянию 8,4 Å (110); 3) фтортальк с межпакетным расстоянием 9,06 Å;

^{*} Использование реакционных смесей вместо минералов (отличительная особенность данных опытов) позволяет проследить процесс формирования фаз в условиях негидростатики от состояния зародышей до достаточно крупных кристаллов.

№ опыта	T, °C	P_1 , кг $_{_1}$ СМ 2	P₂*, кг см²	Продол- житель- ность вы- держки, час.	Высота таб	блетки, мм конечн.	Продолжит. интенсивн. усадки, час.	Ориентировка удлин. крис- таллов
1	750	2000	640	42	27,20	4	11	Есть
2	700	2000	780	16	26,25	8,25	11	Нет
3	700	3000	780	37	27,25	2,75	12	Есть
4	600	1200	950	47	27,25	6,75	10	Нет

^{*} $P_2=\frac{2}{3}$ σ_p \ln (β/a), где σ_p — предел прочности на разрыв при соответствующей температуре (11); σ , σ — наружный и внутренний диаметры дилиндра; при 600; 700 и 750° δ_p равно 800; 3100 и 2500 кг/см³ соответственно.

для фторталька характерен ряд базальных отражений, соответствующих 002 (4,51 Å), 003 (3,10 Å), 004 (2,26 Å) и отражение 060 — 1,514 Å; 4) силикат состава $\mathrm{Na_2Mg_4[Si_6O_{16}]}$ (F, O)₂, встречающийся в виде волокон *. О присутствии этой фазы свидетельствует отражение 9,6 Å (110).

Наиболее полно твердофазовые реакции прошли в опытах №№ 1 и 3. Образцы из этих опытов очень сильно уплотнены и рассланцованы, легко раскалываются на пластинки в плоскости, перпендикулярной осевому

давлению. Для них характерно высокое содержание фторталька.

Ценную информацию о деталях структуры и текстуры, об ориентировке резко анизотропных минералов (амфибол, фтортальк) дает электронномикроскопическое изучение реплик со свежих сколов различных участков таблетки **. Под электронным микроскопом минеральные фазы наблюдаются в виде чередующихся прожилков и линз, располагающихся нормально к осевому давлению, например: линза кварца, прожилок амфибола, прожилок фторталька. Из этого следует, что кристаллы тех или иных минеральных фаз возникают в виде изотермических очагов, которые в условиях бокового течения расплющиваются и разлинзовываются, давая типичную тонкополосчатую текстуру. Наряду с твердофазовыми реакциями, ведущими к образованию фторамфибола и слоистых силикатов, идут процессы раскристаллизации с образованием микрогранобластового кварца (при таких же температурах, но давлении, близком к атмосферному, кварц не образуется). Внутри полосок и линз в опытах №№ 1 и 3 наблюдается преимущественная ориентировка нормально к P_1 волокнистых (игольчатых) и призматических кристаллов. Беспорядочная ориентировка, встречающаяся на отдельных участках, частично обусловлена многочисленными пережимами, микрофлексурами, а также, по-видимому, микронеровностями поверхности, с которой была снята реплика. С определенной долей вероятности можно говорить и о преимущественной ориентировке пластинчатых кристаллов нормально к осевому давлению. Например, были получены снимки (рис. 16), на которых хорошо выраженные шестигранные пластинки фторталька ориентированы базальной плоскостью 001 нормально к осевому давлению.

В опыте № 2, продолжительностью всего 16 час., который можно рассматривать как начальную стадию опытов №№ 1 и 3, линейная ориентировка волокнистых, призматических и пластинчатых кристаллов не наблюдается ***. А так как период интенсивной усадки во всех опытах примерно одинаков и составляет 10—12 час., то можно предполагать, что само по себе пластическое течение, идущее наиболее интенсивно в первой стадии опытов, не является по крайней мере главной причиной возникновения

^{*} Этот силикат, как было установлено специальным исследованием, является промежуточной фазой при образовании фторамфибола (16).

^{**} Исследования проводились на микроскопе GEM-6A. *** Отсутствие ориентировки в опыте № 4 связано, очевидно, с малыми величинами $P_1 - P_2$ и T.

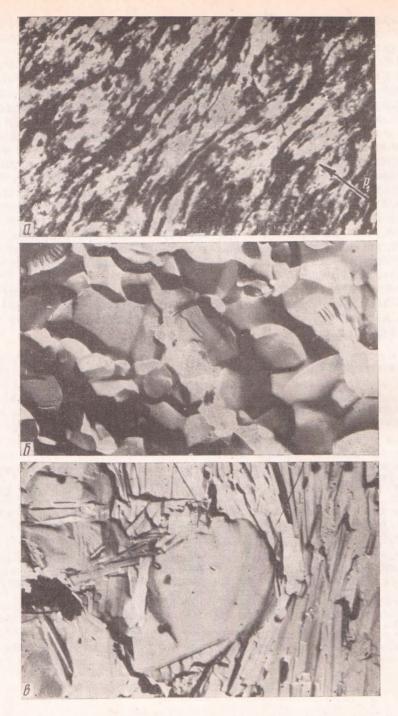


Рис. 1. a — шлиф центральной части таблетки, сечение параллельно осевому давлению, $150\times$: белое — кварц, серое — остальные минералы, интенсивное рассланцевание; δ , ϵ — образец под электропным микроскопом: δ — сечение перпендикулярно осевому давлению; кристаллы фторталька, $30\,000\times$, ϵ — сечение параллельно осевому давлению, порфиробласт кварца, «обтекаемый» кристаллами фторамфибола, $27\,700\times$

ориентировки минералов. Последняя возникает уже на второй, заключительной стадии эксперимента, когда скорость пластического течения довольно резко замедляется. Возможно, что движущей силой этого процесса является рекристаллизация: кристаллы, ориентированные преимущественно по илоскостям сланцеватости, растут за счет кристаллов, ориентированных дормально к ней. В соответствии с теорией (4) это возможно, так как в резко анизотронных кристаллах амфибола и слюды сжимаемость максимальна в направлении, перпендикулярном к лентам и слоям, и минимальна в направлениях, параллельных им (12, 13), а эффект данной ориентировки вызывается, в соответствии с (4), тем, что химический потенциал на поверхности (14) с максимальным сжимающим напряжением увеличивается при сжатии от накопления упругой энергии в меньшей степени, чем уменьшается за счет сокращения объема (заметим, что при фазовых превращениях в условиях негидростатики следует учитывать сечения как с максимальным, так и минимальным напряжениями (15)). Предположение о рекристаллизации как о причине образования ориентировки, не исключает, конечно, действия и других механизмов, например трансляционного скольжения, вращения зерен и др., эффективность которых может быть более значительной (2).

В заключение необходимо отметить, что полученные образцы по своим текстурным и структурным особенностям очень напоминают образцы типичных метаморфических пород с характерным взаимоотношением минеральных фаз (см. рис. 1).

Институт геохимии и физики минералов Академии наук УССР Киев Поступило-14 I 1972

Всесоюзный паучно-исследовательский институт синтеза минерального сырья г. Александров

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Давление и механические напряжения в развитии состава, структуры и рельефа литосферы, Л., 1969. ² Д. Финн, В кн. Природа метаморфизма, М., 1967, стр. 49. ³ G. J. McDonald, Am. J. Sci., 255, 266 (1957). ⁴ W. B. Kamb, J. Geol., 67, № 2, 153 (1959). ⁵ W. B. Kamb, J. Geophys. Res., 66, № 1, 259 (1961). ⁶ G. F. McDonald, Geol. Soc. Am. Mem., 79, 1 (1960). ⁷ Y. Ida, J. Geophys. Res., 74, № 12 (1969). ⁸ D. I. Griggs, M. S. Paterson et al., Geol. Soc. Am. Mem., 79, 21 (1960). ⁹ D. I. Griggs, F. J. Turner, H. S. Heard, Geol. Soc. Am. Mem., 79, 39 (1960). ¹⁰ H. C. Heard, J. Geol., 71, 162 (1963). ¹¹ И. В. Лучицкий, В.И.Громин, Г.Д.У шаков, Эксперименты по деформации горных пород в обстановке высоких температури давлений, Новосибирск, 1967. ¹² В. П. Беликов, К. С. Александров, Т. В. Рыжова, Упругие свойства породообразующих минералов и горных пород, «Наука», 1970. ¹³ Справочник физических констант горных пород, М., 1969. ¹⁴ Г. Т. Остапенко, Геохимия, № 5, 875 (1970). ¹⁵ Г. Т. Остапенко, Геохимия, № 10, 1244 (1971). ¹⁶ Ю. И. Гончаров, В. С. Коваленко, И. П. Хаджи, ДАН, 205, № 4 (1972).