Е. М. ИОЛИН

ЭФФЕКТ МАКСВЕЛЛА И УЗКИЕ ЛИНИИ АКУСТИЧЕСКОГО ПАРАМАГНИТНОГО РЕЗОНАНСА В ЖИДКОСТИ

(Представлено академиком М. А. Леонтовичем 30 Х 1972)

В настоящее время акустический парамагнитный резонанс (а.п.р.) в твердых телах (4) успешно экспериментально изучается в ряде лабораторий. Положение с акустическим парамагнитным резонансом в жидкости (а.п.р.ж.) иное. Неоднократные экспериментальные попытки обнаружить а.п.р.ж. оказались неудачными. Существующие теоретические расчеты (2) привели к пессимистическому выводу о возможности наблюдения а.п.р.ж., так как согласно им вращательная диффузия (в.д.) молекул с временем релаксации τ_1 , модулируя спин-решеточное взаимодействие, уширяет линию а.п.р.ж. на величину $\sim 1/\tau_1$. Поскольку частота звука $\omega \leqslant 1/\tau_1$, то согласно (2) линии а.п.р.ж. будут очень широкими и потому трудно детектируемыми.

Ниже показано, в отличие от (2), что несмотря на быструю в.д. существуют узкие линии а.п.р.ж. Это позволяет оценить возможные условия наблюдения линий а.п.р.ж. и подойти более целеустремленно к их поиску.

Рассмотрим а.п.р. в жидкости, состоящей из анизотронных, одноосных молекул. Для простоты ограничимся рассмотрением той части спин-гамильтониана, которая связана с внутримолекулярным воздействием и учитывает анизотропию только g-фактора:

$$\varphi_{\alpha\gamma} \equiv n_{\alpha}n_{\gamma} - \frac{1}{3}\delta_{\alpha\gamma}, \tag{1}$$

$$\hat{H}_s = \sum_{\alpha=1}^3 g_i \beta H_\alpha S_\alpha + \sum_{\alpha, \gamma=1}^3 g_\alpha \beta H_\alpha S_\gamma \varphi_{\alpha\gamma}; \tag{2}$$

 $H_{\alpha}-\alpha$ -я компонента вектора внешнего магнитного поля; g_i, g_a — изотропная и анизотропная части g-фактора; β — ядерный магнетон (магнетон Бора) ядерного (электронного) спина S; n — единичный вектор, направленный вдоль оси молекулы. Частоты $\omega_0=g_i\beta H$ ядерного магнитного (я.м.р.) или электронного (э.п.р.) резонансов при $\omega_0\tau_1\ll 1$ определяются первым, «изотропным» членом \widehat{H}_s в (2), а продолжительности T_1, T_2 продольной и поперечной релаксации соответственно — тепловыми флуктуациями функций $\phi_{a\gamma}$ во втором «анизотропном» члене \widehat{H}_s .

Покажем, что второй член \hat{H}_s приводит к узким линиям а.п.р.ж. Из оптических измерений известно, что в текущей жидкости с градиентом скоростей возникает эффект Максвелла — двулучепреломление света (4). В присутствии градиента скоростей в жидкости имеются сдвиговые напряжения $\sigma_{\alpha\gamma}$. Несферические молекулы жидкости воздействуют с этими $\sigma_{\alpha\gamma}$ и поэтому в стационарном состоянии жидкость не и зотропна и среднее значение $\phi_{\alpha\gamma}$ не равно нулю. Так как поляризуемость молекул в системе координат, связанной с молекулой, не изотропна, то возникает эффект Максвелла.

В звуковой (продольной и поперечной) волнах $\sigma_{\alpha\gamma}$ осциллирует с частотой звука ω . Вследствие взаимодействия $\sigma_{\alpha\gamma}$ и $\phi_{\alpha\gamma}$ уже послеучета в.д. осциллирует с частотой ω . Из уравнений движения жидкости

(5), подставляя $\phi_{\alpha\gamma}$ в (2), получаем эффективные гамильтонианы а.п.р.ж. для продольной $(\widehat{H}_{SL}{}^{LW})$ и поперечной $(\widehat{H}_{SL}{}^{SW})$ звуковых волн, распространяющихся вдоль оси z с импульсом q_z и амилитудой скорости V_z , V_x :

$$\begin{split} \hat{H}_{\mathrm{SL}}^{\mathrm{LW}} &\approx -\frac{D}{b} g_a H \sin 2\theta \cdot \mu \tau_2 S_{x'} i q_z V_z \exp \left(i q_z z - i \omega t \right) + \text{k. c.}, \\ \hat{H}_{\mathrm{SL}}^{\mathrm{SW}} &\approx -\frac{D}{b} g_a H \cos 2\theta \cdot \mu \tau_2 S_{x'} i q_z V_x \exp \left(i q_z z - i \omega t \right) + \text{k. c.}; \end{split} \tag{3}$$

 μ — высокочастотный модуль сдвига; τ_2 — время сдвиговой релаксации $(\omega^{-1} \gg \tau_2 \ll \tau_1)$; D, b, c — константы, определяющие взаимодействие $\phi_{\alpha\gamma}$ и $\sigma_{\alpha\gamma}$ (5).

Магнитное поле направлено вдоль оси z' системы координат x', y', z', получающейся вращением системы координат x, y, z на угол θ вокруг

оси и

Йинии а. п. р. ж. будут узкими, но не очень сильными, так как (3), по сравнению с акустическим парамагнитным резонансом в твердом теле, содержит множитель $\omega \tau_2 \ll 1$. Звук в (3) не моделирует кристаллическое поле, как в твердом теле, а и н д у ц и р у е т осциллирующую анизотропию в изотропной жидкости.

Вычисляя Фурье-компоненту по времени тепловых флуктуаций $\phi_{\alpha\gamma}$, находим скорости T_1^{-1} , T_2^{-1} продольной и поперечной релаксации

спинов

$$T_1^{-1} \sim T_2^{-1} \sim (g_a \beta H)^2 \frac{TN}{c} \left(\tau_1 + \frac{3}{5} D \tau_2 \right);$$
 (4)

N — число молекул в единице объема. Так как $D \sim 1$ и $\tau_2 \gg \tau_1$, то получаем, в отличие от (6), что взаимодействие $\phi_{\alpha\gamma}$ с ϕ луктуациями сдвиговых напряжений, а не просто поворот отдельной молекулы, характеризуемый временем τ_1 , определяет T_1 , T_2 .

Из (3), (4) находим коэффициент поглощения продольной звуковой

волны сппнами

$$\alpha_g \sim \frac{N_s}{N} \frac{\mu}{K} \left(\frac{\omega}{T}\right)^2 \omega \tau_2 q_z \frac{\sin^2 2\theta}{1 + (\omega - \omega_0)^2 T_2^2} ; \tag{5}$$

 N_s/N — относительная концентрация спинов, K — модуль сжатия, T — температура. Для электронного а.п.р.ж. при $\omega = \omega_0 = 2\pi \cdot 10^{-10}~ce\kappa^{-1}$, $T \sim 300^\circ$ K, $\mu \sim K$, $\omega \tau_2 \sim 1$, $\theta = 45^\circ$, $N_s/N \sim 10^{-3}$ имеем $\alpha_g \sim 10^{-4}$ см $^{-1}$.

Другие виды анизотропных взаимодействий, связанных с фау, напри-

мер, диполь-дипольное, также будут приводить к а.п.р.ж.

В твердом теле акустический парамагнитный резонанс часто детектируется методом насыщения звуком сигналов я. м. р. или э. п. р. В жидкости в случае, когда молекула содержит 2 протона на расстоянии 2Å один от другого, насыщение (благодаря диполь-дипольному взаимодействию) с помощью а. п. р. ж. сигналов я. м. р. протонов требует, даже без учета диффузии молекул между узлами и пучностями продольной звуковой волны, химического обмена и неоднородности магнитного поля, потока звуковой энергии ~ 10 — 100 вт/см². Это, возможно, объясняет неудачу поныток детектировать а. п. р. ж.

В заключение автор выражает глубокую благодарность С. А. Альтшулеру, К. Н. Баранскому, Л. А. Блюменфельду и И. Л. Фабелинскому за

обсуждение работы и полезные, стимулирующие советы.

Институт физики Академии наук ЛатвССР Саласпилс Рижского р-на Поступило 16 X 1972

цитированная литература

¹ С. А. Альтшулер, Б. И. Кочелаев, А. М. Леушин, УФН, **75**, 459 (1961). ² А. Р. Кессель, Ядерный акустический резонанс, М., 1969. ³ С. А. Альтшулер, Б. М. Козырев, Электронный парамагнитный резонанс, М., 1961. ⁴ И. Л. Фабелинский, Молекулярное рассеяние света, М., 1965. ⁵ V. Volterra, Phys. Rev., **180**, 156 (1969). ⁶ H. M. McConell, J. Chem. Phys., **25**, 709 (1956).