УДК 519.21

MATEMATUKA

А. Б. КАТОК

ИНВАРИАНТНЫЕ МЕРЫ ПОТОКОВ НА ОРИЕНТИРУЕМЫХ ПОВЕРХНОСТЯХ

(Представлено академиком А. Н. Колмогоровым 10 XI 1972)

1.1. Множество I(v) содержит только невырожденные седла и, следо-

вательно, состоит ровно из 2p-2 точек.

1.2. $\Omega(v) = M$.

Из результатов А. Г. Майера ((1), исправление неточности, содержащейся в доказательстве, см. (2)) следует, что поверхность M представляется в виде объединения областей M_1, \ldots, M_k с попарно непересекающимися внутренностями, так что границы этих областей состоят из сепаратрис неподвижных точек и либо внутренность области M_i заполнена замкнутыми траекториями, либо любая отличная от сепаратрисы полутраектория, лежащая внутри области, всюду плотна в этой области.

Приводимые ниже утверждения наиболее содержательны в том слу-

чае, когда поток $\{S_t^v\}$ топологически транзитивен.

Мы будем называть борелевскую меру μ на M нетривиальной инвариантной мерой потока $\{S_t^v\}$, если эта мера инвариантна относительно $\{S_t^v\}$, мера любой траектории потока $\{S_t^v\}$ равна нулю и $\mu(M \setminus U) < \infty$ для любой окрестности U множества I(v).

Предложение 1. Иоток $\{S_t^v\}$ имеет нетривиальную инвариантную

меру, положительную на любом открытом множестве.

2. Пусть γ : $[0, 1] \to M$ — путь класса C^1 на M. Построим отображение γ' ориентированного квадрата в M, полагая $\gamma'(s, t) = S_t^v \gamma(s)$, $s, t \in [0, 1]$. Если μ — нетривиальная инвариантная мера потока $\{S_t^v\}$, то существует конечный предел

$$\lambda_{\mu}^{v}\left(\mathbf{y}\right)=\lim_{t\rightarrow0}\frac{1}{t}\int\limits_{\left[0,1\right]\times\left[0,t\right]}\mathbf{sgn}\,J\left(\mathbf{y}^{-1}\right)d\left(\mathbf{y}'\right)^{*}\mathbf{\mu}$$

 $(J(\gamma')-$ якобиан отображения $\gamma')$, который, по аналогии по случаям гладкой меры, будем называть потоком меры μ , переносимым векторным полем υ через γ .

Продолжим функцию λ_{μ} линейно на пространство S(M) гладких

(класса C^{i}) 1-цепей на M с вещественными коэффициентами.

 Π редложение 2. $\lambda_{\mu}{}^{\nu}$ — коцикл, т.е. $\lambda_{\mu}{}^{\nu}(\gamma)=0$ для любого гомоло-

гичного нулю цикла ү.

Класс когомологий коцикла λ_{μ} ° обозначим $\bar{\lambda}_{\mu}$ °. Оператор двойственности Пуанкаре $\pi\colon H^1(M;\mathbf{R})\to H_1(M;\mathbf{R})$ переводит $\bar{\lambda}_{\mu}$ ° в элемент группы гомологий $H_1(M,\mathbf{R})$, который называется классом вращения потока $\{S_t^{\, \mathrm{t}}\}$ относительно меры μ (см. $(^3, ^4)$)*. Мы допустим небольшую воль-

^{*} Если мера µ бесконечна, то определение класса вращения через асимптотические циклы (3) не эквивалентно приведенному.

ность в терминологии и будем называть $\lambda_{\mu}{}^{\upsilon}$ также классом вращения.

Пусть μ_1 , μ_2 — нетривиальные инвариантные меры потока $\{S_t^{v}\}$.

Предложение 3. Если поток $\{\tilde{S}_t^x\}$ не имеет замкнутых траекторий и $\bar{\lambda}_{\mu_t}^v = \bar{\lambda}_{\mu_2}^v$, то $\mu_t = \mu_2$.

Предложение 4. $\bar{\lambda}_{\mu\nu}(\pi \bar{\lambda}_{\mu\nu}) = 0$.

Предложение 3 нетрудно вывести из предложения 2 и топологической

транзитивности потока $\{S_t^*\}$ в областях \hat{M}_1, \ldots, M_k (см. п.1).

Пусть $\alpha \in H^1(M; \mathbf{R})$, $\beta \in H_1(M; \mathbf{R})$. Значение $\alpha(\beta)$ равно индексу пересечения $\pi\alpha \cdot \beta$. Поэтому предложение 4 можно сформулировать так: Индекс пересечения классов вращения любых двух нетривиальных

инвариантных мер потока $\{S_t^{\,\nu}\}$ равен нулю.

Выберем такую окрестность U множества I(v), что $\mu(M\setminus U)>0$ для любой нетривиальной инвариантной меры μ . Назовем меру μ нормированной, если $\mu(M\setminus U)=1$.

Из предложений 3 и 4 следует

Теорема 1. Если поток $\{S_t^v\}$ не имеет замкнутых траекторий, то он имеет не более р различных нормированных эргодических нетривиальных инвариантных мер.

3. Обозначим K(v) конус в пространстве $H^1(M; \mathbf{R})$, порожденный классами вращения всех эргодических нетривиальных инвариантных мер потока $\{S_t^v\}$. Этот конус эквивариантен при гомеоморфизмах: если гомеоморфизм $\mathfrak{q} \colon M \to M$ переводит траектории потока $\{S_t^{v_t}\}$ в траектории потока $\{S_t^{v_t}\}$, то $\mathfrak{q}^*K(v_2) = K(v_1)$. Если M — тор (p=1), то хорошо известно, что конус K(v) состоит из единственного луча и полностью характеризует топологический тип потока $\{S_t^v\}$. При $p \ge 2$ к значениям потока меры, переносимого векторным полем через замкнутые кривые, нужно добавить еще значения потоков через пути, соединяющие неподвижные точки.

Назовем фундаментальным классом потока $\{S_t^v\}$ относительно нетривиальной инвариантной меры μ линейный функционал λ_{μ^v} на группе относительных гомологий $H_1(M,I(v);\mathbf{R})$, порождаемый коциклом λ_{μ^v} . Фундаментальные классы эргодических нетривиальных инвариантных мер потока $\{S_t^v\}$ порождает конус $\hat{K}(v)$ в (4p-3)-мерном пространстве $(H_1(M,I(v);\mathbf{R}))^*$, который также эквивариантен при гомеоморфизмах. Полезность понятия фундаментального класса показывают теоремы 2 и 3.

Обозначим $\Gamma^i(TM)$ пространство C^i векторных полей на M.

Теорема 2. Пусть μ — нетривиальная инвариантная мера потока $\{S_t^v\}$, положительная на любом открытом множестве. Существует окрестность V векторного поля v в пространстве $\Gamma^t(TM)$ со следующим свойством: если $v' \in V$, I(v') = I(v) и поток $\{S_t^{v'}\}$ имеет нетривиальную инвариантную меру μ' такую, что $\hat{\lambda}_{\mu'}{}^{v'} = \hat{\lambda}_{\mu}{}^{v}$, то поток $\{S_t^{v'}\}$ топологически сопряжен потоку $\{S_t^{v'}\}$.

Правдоподобно, что аналогичное утверждение справедливо не только

для близких потоков.

Гипотеза 1. Пусть I(v) = I(v'), $\hat{K}(v') = \hat{K}(v)$. Тогда потоки $\{S_t^{v}\}$ и $\{S_t^{v'}\}$ топологически сопряжены. Если же потоки $\{S_t^{v}\}$ и $\{S_t^{v'}\}$ топологически транзитивны, то для топологической сопряженности вместо равенства $\hat{K}(v') = \hat{K}(v)$ достаточно потребовать существования нетривиальных инвариантных мер μ и μ' таких, что $\hat{\lambda}_{\mu}^{v} = \hat{\lambda}_{\mu'}^{v'}$.

4. Пусть ω — невырожденная 2-форма на M класса C^{∞} . Обозначим μ_{ω} меру, порождаемую ω , $\Gamma^{\infty}(TM, \omega)$ — пространство C^{∞} векторных полей на M, сохраняющих ω , $\lambda_{\omega}{}^{v} = \hat{\lambda}_{\mu_{\omega}}{}^{v}$. Векторные поля v, v' класса C^{∞} назовем C^{∞} -эквивалентными, если существует C^{∞} -диффеоморфизм $\varphi: M \to M$, пе

реводящий траектории потока $\{S_t^{v'}\}$ в траектории потока $\{S_t^{v}\}$.

Теорема 3. Пусть $v \in \Gamma^{\infty}(TM, \omega)$ и поток $\{S_i^v\}$ удовлетворяет усло вию 1.1. Найдется такая окрестность V векторного поля v в пространстве $\Gamma^{\infty}(TM, \omega)$, что любое векторное поле $v' \subseteq V$, для которого I(v') = I(v),

 $\lambda_{o}^{v} = \lambda_{o}^{v}$. C^{∞} -эквивалентно v.

Пусть I — конечное подмножество M, состоящее из 2p-2 точек. Пусть $\Gamma^{\infty}(TM, I, \omega) = \{v \in \Gamma^{\infty}(TM, \omega) : v(x) = 0 \quad \forall x \in I\}, \ \tilde{\Gamma}_{\iota}(I, \omega) - \text{подмно-}$ жество $\Gamma^{\infty}(TM, I, \omega)$ (очевидно, открытое), состоящее из векторных полей, удовлетворяющих условию 1.1, и, следовательно, отличных от нуля вне множества І.

Препложение 5. Если векторное поле у удовлетворяет условиям 1.1 и 1.2, то найдется такое векторное поле $v' \in \Gamma_1(I, \omega)$, что потоки $\{S_t^v\}$ $u\{S_t^v\}$ топологически эквивалентны.

Обозначим $\Gamma_{i}'(I, \omega)$, подмножество $\Gamma_{i}(I, \omega)$, состоящее из векторных полей, имеющих гомологичные нулю замкнутые траектории $\Gamma_2(I, \omega)$ дополнение $\Gamma_1(I, \omega)$ до замыкания $\Gamma_1'(I, \omega)$.

Предложение 6. Пусть $v \in \Gamma_1(I, \omega) \cap \partial \Gamma_2(I, \omega)$. Пересечение границы $\partial \Gamma_2(I, \omega)$ с достаточно малой окрестностью векторного поля v принадлежит объединению конечного числа гиперплоскостей в $\Gamma^{\infty}(TM, I, \omega)$.

Предложение 7. Пусть $v, v' \in \Gamma_2(\Gamma, \omega), f: M \to M - \partial u \phi \phi$ еоморфизм класса С¹, тождественный на множестве І, переводящий траектории потока $\{S_i^{v}\}$ в траектории потока $\{S_i^{v}\}$ $(f_* - автоморфизм группы <math>H_i(M, M)$ $I; \mathbf{R}$), индуцированный f.

Tогда $\lambda_{\omega}^{\ \nu} = c\lambda_{\omega}^{\ \nu'} \circ f_*$, где $c - \mu$ екоторый скаляр.

Другими словами, для векторных полей из $\Gamma_2(I, \omega)$ луч $\{t\lambda_\omega^v: t\geqslant 0\}\subset$ $\subset (H_1(M, I; \mathbf{R}))^*$ эквивариантен при диффеоморфизмах.

 Γ и потеза 2. Если $v, v' \in \Gamma_2(I, \omega), \lambda_{\omega}^{v} = \lambda_{\omega}^{v'}, \tau o$ векторные поля v $u v' C^{\infty}$ -эквивалентны.

Замечание. Структура всех описанных пространств векторных полей не зависит от выбора формы ω и множества I, так как для любых невырожденных 2-форм ω_1 , ω_2 класса C^{∞} с интегралом 1 и любых множеств $I_1, I_2 \subseteq M$, состоящих из 2p-2 точек каждое, можно построить C^{∞} -диффеоморфизм $f: M \to M$ такой, что $f(I_1) = (I_2), f^*\omega_2 = \omega_1$; см. (5).

5. Отображение $\Gamma_2(I, \omega) \to (H_1(M, I; \mathbf{R}))^* : v \to \lambda_{\omega}^{v}$ есть сужение на $\Gamma_2(I, \omega)$ линейного отображения $\Gamma^{\infty}(TM, I, \omega) \rightarrow (H_1(M, I; \mathbf{R}))^*$. Из (1) следует, что векторное поле $v \in \Gamma_2(I, \omega)$ либо топологически транзитивно, либо имеет негомологичную нулю замкнутую траекторию, либо имеет сепаратрису, идущую из одной неподвижной точки в другую. Во втором и третьем случаях существует целочисленное соотношение между значе- $H_1(M; I; \mathbf{Z}) \subset H_1(M, I; \mathbf{R})$. Таким образом, доказано

 Π редложение 8. Можно указать счетное множество гиперплоскостей в $\Gamma^{\infty}(TM, I, \omega)$ таких, что для любого векторного поля $v \in \Gamma_2(I, \omega)$, не принадлежащего пересечению $\Gamma_2(I, \omega)$ с одной из этих гиперплоскос-

 $reй, поток {S_i}$ топологически транзитивен.

Если М — тор, то топологическая транзитивность эквивалентна единственности инвариантной меры. При $p \ge 2$ это не так (см. ниже 6.1). Однако единственность нетривиальной инвариантной меры все-таки является типичным свойством в $\Gamma_2(I, \omega)$. Обозначим $\Gamma_3(I, \omega)$ подмножество $\Gamma_2(I, \omega)$, состоящее из таких векторных полей v, для которых μ_ω — единственная, с точностью до умножения на константу, нетривиальная инвариантная мера потока $\{S_t^v\}$. Очевидно, для $v \in \Gamma_3(I, \omega)$ поток $\{S_t^v\}$ эргодичен относительно меры и...

 Γ еорема 4. Множество $\Gamma_s(I, \omega)$ является подмножеством второй ка-

тегории Бэра в $\Gamma_2(I, \omega)$.

Гипотеза 3. Существует множество $A \subset (H_1(M, I; \mathbf{R}))^*$ лебеговой меры нуль такое, что $v \in \Gamma_3(I, \omega)$, если $\lambda_{\omega} \notin A$.

Пусть σ — риманова метрика на M, ω_{σ} — 2-форма, ассоциированная с σ . Векторное поле v класса C^{∞} называется гармоническим относительно метрики σ , если $v \perp \omega_{\sigma}$ — гармоническая 1-форма. Обозначим J_{σ} : $TM \rightarrow TM$ оператор, действующий в каждом касательном пространстве $T_{x}M$, $x \in M$, как поворот на $\pi/2$ в положительном направлении. Нетрудно показать, что v — векторное поле, гармоническое относительно σ , тогда и только тогда, когда $v \in \Gamma^{\infty}(TM, \omega_{\sigma})$ и $v \in J_{\sigma} \in \Gamma^{\infty}(TM, \omega_{\sigma})$.

Предложение 9. Пусть $v \in \Gamma_2(I, \omega)$ и поток $\{S_t^v\}$ топологически транзитивен. Существует C^∞ -риманова метрика на M, относительно кото-

рой векторное поле у гармоническое.

Предложение 9 используется в доказательстве теоремы 4 и, крометого, оно может оказаться полезным для доказательства или опровержения гипотез 2 и 3.

6. Примеры.

6.1. Число инвариантных мер. Оценка, даваемая теоремой 1, достигается. Действительно, не представляет большого труда построить поток, для которого поверхность M разбивается на p инвариантных областей, так что в каждой области сосредоточена единственная нормированная нетривиальная инвариантная мера. Примеры такого рода имеются у А. Г. Майера (¹), хотя там и не плет речь об инвариантных мерах. Более интересно, с точки зрения рассматриваемого нами круга вопросов, следующее утверждение, доказанное студентом МГУ Е. А. Сатаевым.

Для любого $k \leq p$ существует топологически транзитивный поток, удовлетворяющий условию 1.1 и имеющий ровно k нормированных эрго-

дических нетривиальных инвариантных мер.

6.2. Конечные и бесконечные меры. Пусть p=2. Эффекты, которые могут возникнуть, хорошо проявляются уже в этом случае.

Для топологически транзитивных потоков класса C^{∞} реализуются все пять возможных ситуаций. Именно, поток может иметь единственную нормированную эргодическую нетривиальную инвариантную меру, конечную или бескопечную, или две конечных, или две бесконечных, или одну копечную и одну бесконечную нормированные эргодические нетривиальные инвариантные меры. При этом в качестве одной из конечных мер

можно выбрать меру μω.

Стимулом, побудившим автора заняться рассматриваемым в настоящей заметке кругом вопросов, послужили обсуждения с С. Х. Арансоном и В. З. Гринесом предложенного ими инварианта потоков на поверхностях — гомотопического класса вращения (см. $(^2)$). В частности, конструкция, лежащая в основе примеров из п.6 при p=2, впервые появилась для ответа на поставленный С. Х. Арансоном и В. З. Гринесом вопрос о том, может ли у топологически транзитивного потока существовать траектория, не определяющая предельного направления в $H_1(M, \mathbf{R})$. Один из возможных способов доказательств гипотез 1 и 2 состоит в детальном исследовании связей между фундаментальным классом и гомотопическим классом вращения, который полностью характеризует топологический тип потока, но определяется неконструктивно.

Центральный экономико-математический институт Академии наук СССР Москва Поступило 10 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. Г. Майер, Матем. сборн., **12** (54), 71 (1943). ² С. Х. Арансон, В. З. Гринес, Матем. сборн., **90** (132), № 3, 372 (1973). ³ S. Schwarzman, Ann. Math., 66, 270 (1957). ⁴ В. И. Арнольд, Функц. анализ, **3**, 77 (1969). ⁵ J. Моser, Trans. Am. Math. Soc., **120**, **286** (1965).