УДК 541.65:543.42

ФИЗИЧЕСКАЯ ХИМИЯ

Е. В. ТИТОВ, В. М. БЕЛОБРОВ

О ПЕРЕДАЧЕ ВЛИЯНИЯ ЗАМЕСТИТЕЛЕЙ ПО СИСТЕМАМ СВЯЗЕЙ ОКСИ- И АМИНОСОДЕРЖАЩИХ СОЕДИНЕНИЙ В ПАРАХ

(Представлено академиком О. А. Реутовым 20 XI 1972)

Беллами с сотрудниками (¹) получил и.-к. спектры уксусной кислоты и ее хлорзамещенных в парах и обнаружил, что частота валентных колебаний гидроксильной группы (v_{O-H}) в спектрах всех кислот одна и та же (3584 см-¹). Сравнительно недавно Велти и Стефани (²) провели аналогичные измерения спектров фенола и его n-хлор- и n-бромзамещенных. И в этом случае v_{O-H} в спектрах всех фенолов оказалась одинаковой и равной 3654 см-¹. Вместе с тем известно, что между v_{O-H} , измеренными в спектрах растворов кислот в фенолов, и р K_a соответствующих соединений, существуют линейные корреляции (³-6). Выполненный нами расчет (метод Гоффмана) молекулярных диаграмм ряда моногалондзамещенных уксусных кислот (¹) свидетельствует о том, что заместители в этих кислотах оказывают полевое, а не индуктивное влияние на связи С=О и С-О и практически не меняют порядка гидроксильной группы.

Совокупность приведенных фактов противоречит общепринятым представлениям о том, что в замещенных уксусной кислоты влияние заместителей на гидроксильную группу передается по индукционному механизму, а в фенолах, наряду с индукционным эффектом, становится существенной и роль эффекта сопряжения, причем оба эффекта являются внутримолекулярными и должны работать, естественно, и в отсутствие растворителя. Для того чтобы разобраться в сложившейся ситуации, мы, во-первых, решили убедиться в достоверности результатов (¹, ²) и, во-вторых, получить и.-к. спектры паров таких соедипений, передача влияния заместителей в которых осуществлялась бы в основном посредством эффекта сопряжения. В качестве таковых мы выбрали некоторые n-замещенные аналина, где сопряжение — главный фактор в передаче влияния

заместителей на аминогруппу (см., например, $\binom{8}{1}$).

Мы измерили частоты валентных колебаний O-H (v_{O-H}) и N-H (v_{N-H}) в и.-к. спектрах паров уксусной кислоты и ее замещенных R-CO-OH, где $R=CH_3-$, C_2H_5- , CH_2F- , CHF_2- , CF_3- , CH_2CI- , $CHCl_2-$, CHl_3- , CH_2Br- , $CHBr_2-$, CBr_3- ; фенола и его n-замещенных $R-C_6H_4-OH$, где $R=CH_3O-$, CH_3- , H-, CI-; анилина и его n-замещенных $R-C_6H_4-NH_2$, где $R=CH_3O-$, CH_3- , H-, CI-; анилина и его n-замещенных $R-C_6H_4-NH_2$, где $R=CH_3O-$, CH_3- , H-, CI-, $CF_3CH=CH-$, NO_2- , CF_3SO_2- . Оказалось, что все кислоты имеют одну и ту же v_{O-H} , равную 3585 ± 1 см⁻¹. В спектрах фенолов v_{O-H} также ис изменяет своего зпачения 3653 ± 1 см⁻¹. Частоты валентных колебаний N-H анилина и его n-замещенных представлены в табл. 1, из которой видно, что на частоты v_{N-H} , в отличие от v_{O-H} в спектрах паров кислот и фенолов, заместители оказывают сильное влияние. Так, при переходе от электронодорного заместителя CH_3O- к электроноакцепторным $CF_3CH=CH-$ и CF_3SO_2-* v_{N-H}^{s} растут, соответственно, на 20 и 30 см⁻¹. На рис. 1 пред-

^{*} В этих соединениях полосы поглощения $\nu_{\rm N-H}$ расщеплены в дублет. Для сопоставления использовались низкочастотные составляющие.

ставлены графики зависимостей частот v_{N-H}^s и v_{N-H}^{as} от σ -постоянных заместителей *. На этом же рисунке приведены графики корреляций $v_{N-H} = f(\sigma^-)$ для растворов соответствующих соединений в CCl_4 . Как легко видеть, переход раствор — пар ведет к небольшому сдвигу частот v_{N-H} для анилинов с донорными заместителями. Частоты валентных колебаний N-H апилинов, содержащих сильные акцепторные заместители, в растворах CCl_4 и в парах практически совпадают, тогда как сдвиг частот $v_{O-\Pi}$ для рассмотренных нами кислот и фенолов в аналогичных условиях составляет 50-90 см $^{-1}$.

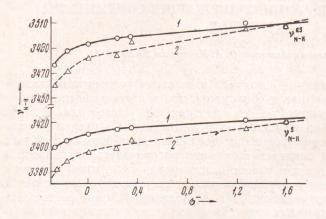


Рис. 1. Зависимость частот валентных колебаний $\mathrm{NH_2}$ -группы n-замещенных анилипов от опостоянных заместителей в парах (1) и в растворах $\mathrm{CCl_4}$ (2), измереные В. И. Рыбаченко в нашей лаборатория

Полученные результаты позволяют заключить, что в изолированных молекулах алифатических карбоновых кислот и фенолов электронное влияние заместителей на функциональную группу через молекулярный остов не передается. Наличие хода $v_{\rm N-H}$ в спектрах паров замещенных анилина и отсутствие такового для $v_{\rm O-H}$ фенолов в тех же условиях дает основание предположить, что в изученных нами и в (²) фенолах эффект сопряжения не проявляется.

Различия в поведении v_{0-H} кислот и фенолов в растворах и парообразном состоянии можно, вероятно, приписать поляризующему связи 0-H

Таблица 1 Значение частот v_{N-H}^s и v_{N-H}^{as} замещенных анилинов в парах (см $^{-1}$)

R-(vN-H	os N—H
and the same of th		
R=CH ₃ O—	3407	3483
CH ₃ —	3412	3493
H—	3417	3501
Cl-	3421	3505
CF ₃ CH=CH-	3422	3505
013011—011	3436	3527
NO_2 —	3428	3516
CF ₃ SO ₂ —	3427	3513
GF 35U2→		0
	3452	3552

действию молекул растворителя, вследствие чего эти связи становятся более воспринмчивыми к влиянию заместителей. О том, что растворитель существенно изменяет полярность связей О-Н, свидетельствует значительное снижение v_{O-H} при переходе от паров к растворам в CCl4, о чем было сказано выше. Таким образом, молекулы растворителя играют роль фактора, сенсибилизирующего влияние заместителей. В парах такой сенсибилизатор отсутствует и действие заместителей по молекулярному остову не в состоянии изменить характер распределения электронной плотности на связи О-Н в такой мере, чтобы это могло быть зарегистрировано

спектроскопически. Прямое полевое взапмодействие между гидроксильной группой и заместителем также не сказывается из-за большей их удаленности друг от друга, по сравнению с расстоянием между заместителем и связью C=O (или C-O). Видимо, поэтому ν_{O-H} разных по силе кислот в паровой фазе совпадают.

^{*} Значения о- из (9).

И.-к. спектры паров изученных соединений были получены на приборе UR-20 в специально сконструированной кювете с подогревом, длиной 10 см.

Авторы считают приятным долгом выразить благодарность Е. С. Ру-

Донецкое отделение физико-органической химии Института физической химии им. Л. В. Писаржевского Акалемии наук УССР

Поступило 14 XI 1972

питированная литература

¹ L. J. Bellamy, A. R. Osborn, R. J. Prace, J. Chem. Soc., 1963, 3749. ² D. Welti, R. Stephany, Applied Spectroscopy, 22, 678 (1968). ³ J. Goulden, Spectrochim. acta, 6, 129 (1954). ⁴ V. Nagai, O. Simamura, Bull. Chem. Soc. Japan, 35, 132 (1962). ⁵ L. Ingraham, J. Corse et al., J. Am. Chem., Soc., 74, 2297 (1952). ⁶ C. Laurence, B. Wojtkowiak, Bull. Soc., chim. France, 1968; 278. ⁷ C. B. Титов, С. И. Чекушин и др. Докл. УРСР, № 12, сер. Б, 1099 (1972). ⁸ О. А. Реутов, Теоретические основы органической химии, М., 1964, стр. 82. ⁹ Е. В. Титов, Н. Г. Корженевская и др., Журн. орг. хим., 7, 2552 (1971).