Доклады Академии наук СССР 1973, Том 211, № 4

УДК 519.21

MATEMATUKA

С. М. КРАСНИТСКИЙ

ОБ УСЛОВИЯХ ЭКВИВАЛЕНТНОСТИ ВЕРОЯТНОСТНЫХ МЕР, СООТВЕТСТВУЮЩИХ ГАУССОВСКИМ ПОЛЯМ, ОТЛИЧАЮЩИМСЯ СРЕДНИМИ ЗНАЧЕНИЯМИ

(Представлено академиком В. М. Глушковым 21 XI 1972)

Пусть $t=(t_1,\ldots,t_n)\in T\subset R^n$, R^n-n -мерное эвклидово пространство. Рассмотрим гауссовские случайные поля $\xi(t)$ и $\eta(t)$, считая, что $\xi(t)$ является однородным и имеет нулевое среднее, а $\eta(t)$ имеет ту же корреляционную функцию, что у $\xi(t)$, и среднее a(t), отличное от нулевого. Для статистики представляет интерес вопрос о том, являются ли меры, соответствующие $\xi(t)$ и $\eta(t)$, эквивалентными (или ортогональными). В случае n=1 основные результаты по этому поводу содержатся в (3). Некоторые сведения о рассматриваемом вопросе в случае произвольного n имеются в (2). В настоящей работе будет предполагаться, что $\xi(t)$ обладает спектральной плотностью $f(\lambda)$. В предположениях относительно $f(\lambda)$, вообще говоря, отличающихся от тех, что делались в (2), получены некоторые условия эквивалентности мер, соответствующих $\xi(t)$ и $\eta(t)$.

Пусть μ и μ_a — меры, соответствующие $\xi(t)$ и $\eta(t)$. Известно (см. (2)), что для эквивалентности μ и μ_a необходимо и достаточно, чтобы функция

a(t) допускала представление

$$a(t) = \int_{\mathbb{R}^n} e^{-i\langle \lambda, t \rangle} \varphi(\lambda) f(\lambda) d\lambda, \quad t \subseteq T,$$

где $\langle \lambda, t \rangle = \lambda_i t_i + \ldots + \lambda_n t_n$, $\varphi(\lambda)$ — некоторая функция, интегрируемая

в квадрате с весом $f(\lambda)$. Отсюда следует

T е о р е м а 1. Для эквивалентности μ и μ_a достаточно, чтобы функция a(t) была непрерывной в T и допускала интегрируемое с квадратом продолжение на все R^n , преобразование Фурье которого $b(\lambda)$ удовлетворяет условию

$$_{R^{n}}|b(\lambda)|^{2}[f(\lambda)]^{-1}d\lambda < \infty.$$

В случае ограниченной спектральной плотности это условие является необходимым.

Определение. Пусть $l=(l_1,\ldots,l_n)$. Будем говорить, что функция $a(t), t \in T$, принадлежит классу $W_2^{-1}(T)$, если для любого j, $1 \le j \le n$, существует обобщенная в смысле С. Л. Соболева производная от a(t) по t_j порядка l_j п конечна величина

$$\left\|\left.a\right.
ight\|_{W^{\left.l\right.}_{2}\left(T
ight)}=\left\|\left.a\right.
ight\|_{L_{2}\left(T
ight)}+\sum_{j=1}^{n}\left\|rac{\partial^{l}j_{a}}{\partial t_{j}^{l}j}
ight\|,$$

тде

$$||a||_{L_2(T)} = \left[\int_T |a(t)|^2 dt\right]^{1/2}.$$

Предположим, что $f(\lambda)$ удовлетворяет условию

$$f(\lambda) \cdot \sum_{j=1}^{n} (1 + \lambda_j^2)^l i \leqslant c = \text{const},$$

где l_i — неотрицательные целые числа. Тогда справедлива

Теорема 2. Для эквивалентности и и и и необходимо, чтобы функция $a(t), t \in T$, была непрерывной в T и принадлежала $W_2^l(T)$ при $l = (l_1, \ldots$

Замечание 1. В дальнейшем всюду, где предполагается, что a(t), $t \in T$, принадлежит $W_2^l(T)$, считается, что существует функция a(t), $t \in \mathbb{R}^n$, продолжающая $a(t), t \in T$, и принадлежащая $W_2(\mathbb{R}^n)$ (см. $\binom{1}{2}$). В частности, если l таково, что $l_1 = \ldots = l_n$, для существования такого продолжения достаточно, чтобы множество T имело липшицеву границу (CM. (5)).

Пусть $f(\lambda)$ удовлетворяет условию

$$f(\lambda) \cdot \sum_{j=1}^{n} (1 + \lambda_j^2)^{l_j} \geqslant c = \text{const} > 0,$$

где l_i — положительные целые числа. В этом случае из теоремы 1 следует Теорема 3. Для эквивалентности и и и а достаточно, чтобы функция a(t) была непрерывной в T и принадлежала $W_2^{l}(T)$ при $l=(l_1,\ldots,l_n)$.

Из теорем 2 и 3 легко вывести следующий результат.

Следствие. Пусть

$$c_1(1+\lambda_1^2+\cdots+\lambda_n^2)^{-m} \leq f(\lambda) \leq c_2(1+\lambda_1^2+\cdots+\lambda_n^2)^{-m},$$

rde m - положительное целое число.

Тогда для эквивалентности и и и необходимо и достаточно, чтобы a(t) была непрерывной в T и принадлежала $W_{2}(T)$ при $l=(m,\ldots,m)$.

Рассмотрим теперь случай, когда $f(\lambda) = P(\lambda) / Q(\lambda)$, где $P(\lambda)$ – положительный многочлен эллинтического типа (т. е. его главная часть отлична от нуля при $0 \neq \lambda \in \mathbb{R}^n$) степени $2p, Q(\lambda)$ — положительный многочлен степени 2q. Тогда имеет место

T е o p е м а 4. Если функция a(t), $t \in T$, непрерывна в T и прина ∂ ле-

жит $W_2^l(T)$ при $l=(q-p,\dots,q-p)$, то меры μ и μ_a эквивалентны. Замечание 2. Для некоторых видов дробно-рациональных спектральных плотностей можно доказать справедливость условий эквивалентности, несколько отличных от тех, что предлагаются в теореме 4. Так, пусть

$$P(\lambda) = \sum_{j=1}^{n} P_{j}(\lambda_{j}), \quad Q(\lambda) = \sum_{j=1}^{n} Q_{j}(\lambda_{j}),$$

где $P_j(\lambda_j)$ и $Q_j(\lambda_j)$ — положительные многочлены от λ_j степеней $2p_j$ и $2q_j$ соответственно, $j = 1, \ldots, n, f(\lambda) = P(\lambda) / Q(\lambda)$.

Тогда, как следует из теоремы 3, если функция a(t) непрерывна в Tи принадлежит $W_2^{\ l}(T)$ при $\dot{l}=(q_1-p_1,\ldots,q_n-p_n)$, то меры μ и μ_a

Киевский институт инженеров гражданской авиации

Поступило 17 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. В. Бесов, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 89, 5 (1967).
² З. С. Зеракидзе, Тр. инст. прикл. матем. Тбилисск. унив., 2, 215 (1969).
³ И. А. Ибрагимов, Ю. А. Розанов, Гауссовские случайные процессы, М., 1970.
⁴ В. П. Ильин, Сибирск. матем. журн., 8, 3, 573 (1967).

⁵ С. М. Никольский, Приближение функций многих переменных и теоремы вложения, М., 1969.