УДК 541.124-16+541.11.115

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

В. А. ЛЕВИЦКИЙ, Н. Н. ШЕВЧЕНКО, Ю. ХЕКИМОВ, член-корреспондент АН СССР Я. И. ГЕРАСИМОВ

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ ОКИСИ СТРОНЦИЯ И ВОЛЬФРАМАТА СТРОНЦИЯ С ЦИРКОНИЕМ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ В ВОДОРОДЕ И В ВАКУУМЕ

В работе приводятся результаты исследования процессов взаимодействия окиси стронция и трехстронциевого вольфрамата (Sr₃WO₆) с цирконием как активатором тремоэмиссии некоторых типов катодов на осно-

ве окислов и вольфраматов щелочноземельных металлов.

Окись стронция получалась разложением в вакууме $(1\cdot 10^{-6} \text{ мм рт. ст.})$ SrCO₃ (х. ч.) при температуре 1100° С в течение 150 час. Исходный вольфрамат стронция готовился аналогично (¹). Образцы спрессованных окиси стронция и циркония прокаливались при непрерывной откачке в вакууме ($5\cdot 10^{-6}$ мм рт. ст.). Таблетки смесей SR₃WO₆ + Zr выдерживались в токе H_2 (точка росы от -20 до -40°) при $1100-1600^{\circ}$ или в вакууме ($1\cdot 10^{-5}-1\cdot 10^{-6}$ мм рт. ст.) при температуре $1000-1800^{\circ}$. Для исследования промежуточных продуктов взаимодействия в системе Sr_3WO_6 + Zr проводилось длительное (до 300 час.) прокаливание образцов в кварцевых ампулах в вакууме ($1\cdot 10^{-6}-5\cdot 10^{-6}$ мм рт. ст.). Все операции с образцами до и после опытов осуществлялись в сухой камере. Рентгенофазовый апализ исходных фаз и продуктов взаимодействия проводился в фокусирующей камере-монохроматоре (²). Необходимые для термодинамического анализа процессов восстановления термодинамические свойства $SrZrO_3$ были определены нами методом э.д.с. (³) в элементе

Проведенные нами рентгенографические исследования продуктов восстановления $\mathrm{Sr_3WO_6}$ водородом (табл. 1) и термодинамический анализ устойчивости соединений в системе $\mathrm{SrO-WO_3}$ с использованием данных (4) свидетельствуют о том, что в интервале $1400-1900^\circ\mathrm{K}$ и давлениях насыщенного пара $\mathrm{H_2O}$ при температурах $\leqslant (-30-0^\circ\mathrm{C})~\mathrm{Sr_3WO_6}$ восстанавливается водородом по реакции

$$^{1}/_{3} \operatorname{Sr_{3}WO_{6}} + \operatorname{H}_{2} \stackrel{\longrightarrow}{\subset} \operatorname{SrO} + ^{1}/_{3} \operatorname{W} + \operatorname{H}_{2} \operatorname{O}_{(\operatorname{ra3})}.$$
 (1)

Из табл. 1 и 2 видно, что в этих условиях окись стронция легко вступает во взаимодействие с цирконием по реакциям типа

$$2SrO + \frac{1}{2}Zr \rightarrow \frac{1}{2}Sr_2ZrO_4 + Sr_{(ras)},$$
 (2)

$$^{3}/_{2} \operatorname{Sr}_{2} \operatorname{Zr} O_{4} + ^{1}/_{2} \operatorname{Zr} - 2 \operatorname{Sr} \operatorname{Zr} O_{3} + \operatorname{Sr}_{(ra_{3})}$$
 (3)

с образованием в качестве твердого конечного продукта преимущественно $SrZrO_3$ *. Из табл. 2 следует, что при восстановлении окиси стронция цирконием по реакции

$$^{3}/_{2} \operatorname{SrO} + ^{1}/_{2} \operatorname{Zr} \rightarrow ^{1}/_{2} \operatorname{SrZrO}_{3} + \operatorname{Sr}_{(ra3)}$$
 (4)

в системе будет образовываться значительно большее количество газообраз-

^{*} Согласно (5), в системе SrO — ZrO $_2$ существует по крайпей мере два ссединения ${\rm SrZrO}_3$ и Sr $_2{\rm ZrO}_4$. Из-за отсутствия в литературе термодинамических свойств Sr $_2{\rm ZrO}_4$ термодинамические параметры реакций с участием этого соединения не рассчитывались.

ного стронция по сравнению с количеством $Sr_{(ras)}$, выделяющимся согласно реакциям

$$2SrO + \frac{1}{3}W \rightarrow \frac{1}{3}Sr_3WO_6 + Sr_{(\Gamma a3)},$$
 (5)

$$SrO + H_2 \supseteq Sr (ras) + H_2O_{(ras)}.$$
 (6)

При этом скорость образования Sr (газ) будет лимитироваться процессом образования жидкого стронция

$$^{3}/_{2} \operatorname{SrO} + ^{1}/_{2} \operatorname{Zr} \rightarrow ^{1}/_{2} \operatorname{SrZrO}_{3} + \operatorname{Sr}_{(H)}$$
 (7)

и его испарением по реакции

$$\operatorname{Sr}(\mathfrak{R}) \stackrel{\longrightarrow}{\subset} \operatorname{Sr}_{(\operatorname{ras})}.$$
 (8)

В процессе спекания образцов Sr_3WO_6 с различным содержанием циркония необходимо учитывать возможность прямого восстановления Sr_3WO_6 в вакууме по реакциям типа

$$Sr_3WO_6 + 2Zr - 2SrZrO_3 + W + Sr_{(H)},$$
 (9)

$$^{3}/_{2} \operatorname{Sr_{3}WO_{6}} + ^{1}/_{2} \operatorname{Zr} \to ^{1}/_{2} \operatorname{SrZrO_{3}} + ^{3}/_{2} \operatorname{Sr_{2}WO_{5}} + \operatorname{Sr_{(W)_{5}}}$$
 (10)

$$3Sr_3WO_6 + 2Zr - 2Sr_2ZrO_4 + 2Sr_2WO_5 + W + Sr_{(H)}, \tag{11}$$

$$2Sr_3WO_6 + \frac{1}{2}Zr \rightarrow \frac{1}{2}Sr_2ZrO_4 + 2Sr_2WO_5 + Sr_{(86)}.$$
 (12)

Термодинамический анализ и результаты рентгенофазового исследования прокаленных образцов с различным содержанием Zr показывают, что в процессе нагрева вольфрамат Sr_3WO_6 восстанавливается цирконием преимущественно по реакциям типа (9), (11) с образованием Sr_2ZrO_4 и $SrZrO_3$ и выделением металлического вольфрама. Действительно, как видно из табл. 2, отрицательные во всем интервале температур величины $\Delta G^0 = f(T)$ свидетельствуют о самопроизвольном протекании реакции (9). Следует, однако, отметить, что восстановление Sr_3WO_6 цирконием до $SrZrO_3$ и W протекает медленнее по сравнению с восстановлением свободной окиси стронция и при низких температурах сопровождается образованием рентгенографически заметных количеств различных промежуточных продуктов (табл. 1). Так, на рентгенограммах образцов $Sr_3WO_6 + Zr$,

Таблица 1 Фазовый состав продуктов взаимодействия Sr и Sr₃WO₆ с цирконием

Состав исходной смеси	Условия термообработки					
	t, °C	продолж., среда		Обнаруженные фазы *		
Sr ₃ WO ₆	1100	3,0	H_2	Sr ₃ WO ₆ **, W (следы)		
Sr_3WO_6	1400	2,0	H_2	Sr ₃ WO ₆ , W		
Sr ₃ WO ₆	1600	2,0	H_2	W, Sr_3WO_6		
4SrO + Zr	1100	50	Вакуум	SrZrO ₃ , Sr ₂ ZrO ₄		
4SrO + Zr	1100	130	»	SrZrO ₃		
$3Sr_3WO_6 + 2Zr$	1000	300	>>	Sr ₂ WO ₅ , SrZrO ₃ , Sr ₃ WO ₆		
$Sr_3WO_6 + 2Zr$	1100	50	»	W, SrZrO ₃ , Sr ₂ ZrO ₄ , ZrO ₂		
$Sr_3WO_6 + 2Zr$	1100	132	»	W, SrZrO ₃ , Sr ₂ ZrO ₄ , ZrO ₂ (следы)		
$Sr_3WO_6 + 2Zr$	1500	2,0	»	W, SrZrO ₃ Sr ₃ WO ₆		
$Sr_3WO_6 + 2Zr$	1600	2,0	»	SrZrOa, W		
$Sr_3WO_6 + 2Zr$	1750	2,0	»	SrZrO ₃ , W		
$Sr_3WO_6 + 2Zr$	1100	3,0	H_2	Sr ₃ WO ₆ , SrZrO ₃ , W		
$Sr_3WO_6 + 2Zr$	1400	2,0	H_2	SrZrO ₃ , W, Sr ₃ WO ₆ (следы)		
$Sr_3WO_6 + 2Zr$	1600	$\frac{1}{2},0$	H_2	SrZrO ₃ , W		

^{*} Относительное количество присутствующих в прокаленных образдах фаз соответствует порядку их записи в таблице и определялось путем сравнения интенсивностей наиболее ярких линий обнаруженных фаз. ** Вольфрамат Sr₃WO₆ ниже 1075° С кристаллизуется в триклинной сингонии, выше 1075°— в ку-

** Вольфрамат Sr₃WO₆ ниже 1075° С кристаллизуется в триклинной сингонии, выше 1075°— в кубической.

Термодинамические параметры некоторых реакций восстановления с участием SrO и Sr₃WO₆*

	$\Delta G_T^0 = f(T)$, кал или	ΔG⁰,, ккал/моль	P _{Sr} , мм рт. ст.	∆ <i>G</i> °, ккал/моль	$P_{\mathrm{Sr}},$ мм рт. ст.	∆G°, ккал/моль	P _{Sr} mm pt. ct.
Реакция	$\lg P_{\mathrm{Sr}} = f(1/T)$, mm pt. ct.	1300° K		1500° K		1700° K	
$^{1}/_{3}\mathrm{Sr_{3}WO_{6}} + \mathrm{H_{2}} = \mathrm{SrO} + \mathrm{W} + \mathrm{H_{2}O_{(Pa3)}}$	$\Delta G^0 = 29760 - 6,27T$	21,6		20,4		19,1	_
$^{3}/_{2}$ SrO + $^{1}/_{2}$ Zr = $^{1}/_{2}$ SrZrO ₃ + Sr _(ra3)	$\Delta G^0 = 35980 - 23,55T$	5,4	84,4	0,7	609,5	-4,0	2523
$2SrO + \frac{1}{3}W = \frac{1}{3}Sr_3WO_6 + Sr_{(ra3)}$	$\lg P_{\rm Sr} = -\frac{18970}{T} + 8,44$	-	6,9.10-7	-	6,1.10-5	_	1,9.10-3
$SrO + H_2 = Sr_{(raa)} + H_2O_{(raa)} **$	$\Delta G^0 = 116560 - 31,69T$	75,4	1,6.10-7		$6,5 \cdot 10^{-5}$	12 11 -12	6,4·10 ⁻³ (—20°)
(100)			1,3.10-6	69,0	5,4.10-4	62,7	5,4·10 ⁻² (—40°)
			1,7.10-5		$7,2 \cdot 10^{-3}$		7,1·10 ⁻¹ (—60°)
$^{3}/_{2}SrO + ^{1}/_{2}Zr = ^{1}/_{2}SrZrO_{3} + Sr_{(H)}$	$\Delta G^0 = 1860 - 2,91T$	1,9	_	-2,5		-3,1	
$Sr_{(H)} = Sr_{(F83)}$	$\lg P_{\rm Sr} = -\frac{7460}{T} + 7,39***$	_	42,6	-	263,0	_	1012
$Sr_3WO_6 + 2Zr = 2SrZrO_3 + W + Sr_{(H)}$	$\Delta G^0 = -150600 + 2,66T$	-147,1	_	-146,6	_	-146,1	_
$^{3}/_{2}Sr_{3}WO_{6} + ^{1}/_{2}Zr = ^{1}/_{2}SrZrO_{3} + + ^{3}/_{2}Sr_{2}WO_{5} + Sr_{(H)}$	$\Delta G^0 = 13660 - 4,17T$	8,2	_	7,4	-	6,6	-
$Sr_2WO_5 + H_2 = \frac{2}{3}Sr_3WO_6 + \frac{1}{3}W + H_2O_{(ras)}$	$\Delta G^0 = 21880 - 5,447$	14,8	-	13,7	_	12,6	-

^{*} Необходимые для расчетов значения термодинамических свойств участников реакций заимствованы из (3 , 4 , 6 , 7). ** При расчете предполагалось, что $\Sigma_{p_i} = 760$ мм рт. ст., а давление $\mathrm{H}_2\mathrm{O}_{(\mathrm{F}33)}$ задано температурой сатуратора.

^{***} Среднее из данных (⁸, ⁹).

прокаленных в течение 50, 130 и 300 час. при 1000 и 1100°С, отчетливо обнаруживаются линии Sr_2WO_5 , Sr_2ZrO_4 и ZrO_2* . С увеличением времени и температуры прокаливания интенсивность основных линий, принадлежащих этим соединениям, постепенно уменьшается, а интенсивность линий $SrZrO_3$ и W увеличивается, что свидетельствует об уменьшении концентрации промежуточных фаз в результате реакций (11), (3) и реакций (13), (14):

$$Sr_2WO_5 + Zr \rightarrow Sr_2ZrO_4 + ZrO_2 + W,$$
 (13)

$$Sr_2ZrO_4 + ZrO_2 \rightarrow 2SrZrO_3.$$
 (14)

В токе осущенного водорода (точка росы $-20 \div -40^{\circ}\,\mathrm{C}$) процессы вза-имодействия в системе $\mathrm{Sr_3WO_6} + \mathrm{Zr}$ значительно ускорятся за счет частичного восстановления водородом образующихся вольфраматов. Так, выделяющийся в небольших количествах согласно реакции (11) вольфрамат $\mathrm{Sr_2WO_5}$ при высоких температурах легко восстанавливается водородом по реакции

$$Zr_2WO_5 + {}^{1}/_{2}H_2 \Rightarrow {}^{2}/_{3}Zr_3WO_6 + {}^{1}/_{3}W + H_2O (ras).$$
 (15)

Появляющийся трехстронциевый вольфрамат снова взаимодействует с водородом по реакции (1). Образующаяся в конечном счете свободная окись стронция восстанавливается избытком циркония по реакции (7). Таким образом, в результате комплекса реакций восстановления (1) — (4), (7), (9), (11), (13)—(15) в зависимости от количества циркония в исходной смеси Sr_3WO_6+Zr в качестве конечных продуктов будут накапливаться различные количества $SrZrO_3$ и вольфрама. Этот вывод полностью подтверждается результатами рентгенфазового анализа образцов, прокаленных в водороде при различных температурах (табл. 1).

Московский государственный университет им. М. В. Ломоносова

Поступило 30 I 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. М. Ковба, Л. Н. Лыкова, Н. Н. Шевченко, ЖНХ, 16, в. 8, 2154 (1971).

² Ю. П. Симанов, В. К. Трунов и др., Сборн. Новые машины и приборы для испытания металлов, М., 1963, стр. 124.

³ Ю. Хекимов, В. А. Левицкий и др., ДАН, 211, № 2 (1973).

⁴ Ю. Я. Школич, Автореф. кандидатской диссертации, МГУ, 1972.

⁵ Л. Р. Тгаvегs, М. Fоех, High Temperatures — High Pressures, 1 (1), 409 (1969).

⁶ Справочник: Термические константы индивидуальных веществ, Под ред. В. Н. Глушко, Л. В. Гурвича и др., Изд. АН СССР, 1962.

⁷ D. R. Stull, H. Proph et, JANAF Thermochemical Tables, Second Edition, U. S. Department of Commers. N.B.S., U.S.A., 1971.

⁸ А. Н. Несмеянов, Давление пара химических элементов, Изд. АН СССР, 1963.

⁹ Л. Воhdansky, Н. Е. J. Schins, J. Phys. Chem., 71, 245 (1967).

^{*} Прокаливание в этих же условиях таблеток порошкообразного циркония не привело к образованию рентгенографически заметных количеств ${\rm ZrO_2}.$