УДК 541.11+546.226′161

ФИЗИЧЕСКАЯ ХИМИЯ

В. Я. ЛЕОНИДОВ, В. С. ПЕРВОВ, О. М. ГАЙСИНСКАЯ, Л. И. КЛЮЕВ

## ФТОРНАЯ КАЛОРИМЕТРИЯ. ЭНТАЛЬПИЯ ОБРАЗОВАНИЯ ГЕКСАФТОРИДА СЕРЫ

(Представлено академиком В. П. Глушко 19 II 1973)

Энтальпия образования высшего фторида серы,  $\Delta H_f^0(\mathrm{SF_6(r)})$ , является важной ключевой величиной в термохимии серы, однако ее значение нельзя считать вполне надежно установленным, так как литератур-

ные данные по  $\Delta H_f^0(SF_6(r))$  не согласуются между собой.

Различными авторами получены следующие значения энтальпии об- $SF_6(\Gamma)$ ккал/моль): -262,0 $(1), 288,9\pm0.7$ (B  $-288,5\pm0,7$  (3),  $-291,77\pm0,24$  (4), -291,4 (5). Все они найдены методом сжигания элементарной серы во фторе в калориметре. В работе (1) реакция проводилась в проточном калориметре при постоянном давлении, ее результат малонадежен из-за отсутствия сведений о чистоте исходных веществ и возможности ошибок, связанных с неучтенными побочными тепловыми эффектами. Работа (2) изложена в очень краткой форме, многие данные, необходимые для оценки надежности ее результата, отсутствуют. Известно, что реакция проводилась при повышенном давлении фтора в стеклянном реакционном сосуде. Позднее Гросс (3), сообщая о тех же измерениях, приводит несколько более низкое число; причина изменения прежнего результата (2) остается неясной. Наиболее тщательно выполнена работа (4), где сера сжигалась во фторе в калориметрической бомбе. В ней использовались высокочистые исходные вещества и проводился детальный анализ конечных продуктов исследуемой реакции. Тем не менее объяснить заметное расхождение данных (2, 3) и (4) затруднительно, так как авторы этих работ являются известными специалистами в области фторной калориметрии и их данные по теплотам фторирования других веществ хорошо согласуются. В (5) было проведено три опыта по сожжению того же образца серы, что и в (4); погрешность полученного результата не указана. Эти опыты описаны весьма кратко и их цель состояла не в уточнении величины  $\Delta H_f^{\,0}(SF_6(\mathbf{r}))$ , а в проверке надежности использованной авторами (5) аппаратуры. Кроме того, исходный фтор в этой работе был недостаточно высокой чистоты. Таким образом, данные (5) не внесли ясности в вопрос об установлении надежного значения энтальпии образования гексафторида серы. Для решения этой задачи требовалось проведение новых экспериментальных измерений.

В настоящей работе величина энтальпии образования SF<sub>6</sub>(г) была вновь определена методом сжигания элементарной серы во фторе в ка-

лориметрической бомбе.

Исходные вещества. Для опытов использовали препарат серы о. ч., содержащий следующие примеси (в вес.%): О 0,025, N 0,004, битумы 0,002, Se 0,001, Al 1·10<sup>-4</sup>; общее количество примесей в сере не превышало 0,035%. По рентгенографическим данным препарат представлял собой ромбическую модификацию серы. Анализ серы на кислород был проведен методом нейтронной активации. Фтор, использованный для калориметрических определений, имел чистоту 99,77% и содержал

 $0.13\%~O_2$  и  $0.10\%~N_2$ . Анализ фтора выполнялся ртутным методом (6); со-

став примесей устанавливался масс-спектрометрически.

Аппаратура и методика. Калориметрические измерения проводились в водяном калориметре с изотермической оболочкой. Подъем температуры (~0,6°) измерялся медным термометром сопротивления, включенным в мостовую схему. Температурная чувствительность схемы была  $4\cdot10^{-5}$ ° С. Тепловое значение калориметра (~2600 кал/град) определялось с точностью  $\pm0,05\%$  сожжением в кислороде эталонной бензойной кислоты. Начальная температура во всех опытах составляла  $24,75^\circ$ .

Поскольку сера относится к веществам, самопроизвольно восиламеняющимся во фторе, она сжигалась в двухкамерной калориметрической

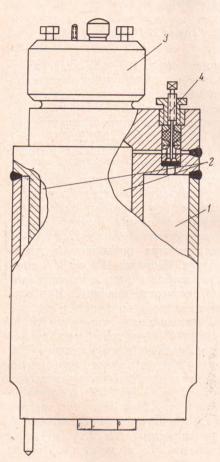



Рис. 1. Двухкамерная калориметрическая бомба для сожжения веществ во фторе. Обозначения в тексте

бомбе, изготовленной из монель-металла. Наличие в бомбе двух камер позволяло до необходимого момента избеконтакта исследуемого вещества с фтором. Основные детали бомбы представлены на рис. 1. Объем камеры для фтора (1) 300 см³, объем реакционной камеры (2), куда помещалась сера, составлял 150 см<sup>3</sup>. Последняя снабжена крышкой (3); для герметизации каме-(2) использовалась прокладка из фторопласта. Каждая из камер была снабжена вентилем игольчатого типа (на рисунке не показано). Для соединения объемов камер служило специальное перепускное устройство (4) с разрывной медной мембраной.

Перед впуском в бомбу фтора она эвакуировалась до остаточного давления  $5 \cdot 10^{-3}$  мм рт. ст. До начала опытов бомба подвергалась тщательной пассивации; при этом она выдерживалась длительное время под давлением фтора, чего проводились «холостые» сожжения во фторе серы. Из-за гигроскопичности защитного слоя фторидов, образующегося на поверхности бомбы при пассивации, все последующие операции с открытой бомбой производились только в сухой камере. Навеска серы (~0,18 г) помещалась в бомбе на диске из монель-металла, вес диска 16 г. Начальное давление фтора после разрушения мембраны, разделяющей обе камеры, составляло 2,9 атм. Реакция серы с фтором протекала полностью, никаких следов недогоревшей серы не на-

блюдалось. Внешний вид поверхности диска, которая была полпрована, и его вес после опытов практически не изменялись. Постоянство веса отдельных внутренних деталей бомбы до и после калориметрических опытов в пределах 0,03—0,04 мг подтвердило отсутствие искажения результатов за счет взаимодействия материала бомбы с фтором. После отделения газообразных продуктов исследуемой реакции от избыточного фтора они подвергались и.-к. спектральному анализу. На спектрограмме были обнаружены только линии, относящиеся к SF<sub>6</sub> (7). Следовательно, образования в качестве побочных продуктов SF<sub>4</sub>, S<sub>2</sub>F<sub>40</sub>, а также оксифторидов серы не происходило. Фтор, отделенный от гексафторида серы, повторно

анализировался ртутным методом. Постоянство состава непоглощенного ртутью газового остатка служило дополнительным подтверждением отсутствия побочных взаимодействий за счет примесей, содержащихся в

исходном фторе.

Для определения величины поправки на тепловой эффект введения фтора в пустую реакционную камеру были проведены специальные калориметрические опыты. Они выполнялись обычным образом с той лишь разницей, что навеска серы в бомбу не помещалась. Определяемая поправка складывалась из двух частей - энергии расширения сжатого фтора и энергии его взаимодействия с незначительным количеством посторонних веществ, которые могли быть адсорбированы на стенках реакционной камеры. По результатам 3 опытов она найдена равной  $5.0 \pm 0.4$  кал; погрешность выражена 95% доверительным интервалом. Величина этой поправки составляла около 0,3% от общего количества тепла, выделяющегося в бомбе в опыте по фторированию серы.

Результаты опытов. На основании данных семи опытов вычислено среднее значение теплоты сгорания препарата серы во фторе в условиях сожжения в бомбе  $\Delta U_{\rm B} = -9038,1\pm7,3$  кал/г. Приведенная погрешность вычислена по формуле  $\sigma = \pm t \sqrt{\frac{\Sigma \Delta^2}{n \, (n-1)}} \, ,$ 

фициент Стьюдента для серии из п опытов и 95% доверительного интервала;  $\Sigma \Delta^2$  — сумма квадратов отклонений отдельных результатов от сред-

него арифметического.

Для вычисления теплоты сгорания чистой серы во фторе в стандартных условиях к найденному значению  $\Delta U_{\scriptscriptstyle \mathrm{B}}$  вводились поправки на примеси,  $-1.6\pm0.4$  кал/г, и на изменение внутренней энергии газов с давлением, -0.6 кал/г (поправка Уошберна). Для реакции S (к., ромбич.) +  $+3F_2(r) = SF_6(r)$  найдено:  $\Delta U^0_{298,15} = -9040.3$  кал/г S.

При расчете поправки на примеси сделаны следующие предположения: 1) кислород присутствует в препарате в виде H<sub>2</sub>O, при взаимодействии которой с фтором образуются О2 и НF (4); 2) азот находится в свободном состоянии и в реакцию с фтором не вступает; 3) примесь битумов состоит из 75% углерода и 25% водорода (8), сгорающих во фторе с образованием CF4 и HF; 4) Se и Al присутствуют в препарате в свободном состоянии и сгорают во фторе с образованием SeF<sub>6</sub> и AlF<sub>3</sub>. Для расчета этой поправки использовались наиболее надежные данные по теплотам сгорания примесей во фторе (4, 9). Погрешность значения поправки на примеси оценена с учетом неопределенности принятых предположений о состоянии примесей и неточности данных анализа исходного препарата серы.

Значение коэффициентов  $(\partial U/\partial p)_{\tau}$  и  $\mu$  (в уравнении  $pV/RT = 1 - \mu p$ ) для фтора и смеси F<sub>2</sub> и SF<sub>6</sub>, необходимые для вычисления поправки

Уошберна, были заимствованы из работы (4).

После введения поправки для перехода от  $\Delta U$  к  $\Delta H$  окончательно получаем:  $\Delta H_f^{0}_{298,15}(\mathrm{SF}_6(\mathbf{r})) = -291,1 \pm 0,3$  ккал/моль, что соответствует  $-1218,0\pm1,3$  кдж/моль (ат. вес S = 32,064; 1 кал = 4,1840 дж). При расчете погрешности конечного результата учтены вклады от всех известных источников ошибок (воспроизводимость данных опытов по сожжению серы во фторе, ошибка калибровочных опытов, неточность расчета различных поправок и т. д.).

Обсуждение результатов. Найденное значение стандартной энтальшии образования гексафторида серы оказалось близким к результату (4) и заметно отличающимся от данных (2, 3). Поскольку в настоящем исследовании, как и в работе (4), использовались высокочистые исходные вещества и проводился тщательный контроль за составом конечных продуктов, данные  $(^2, ^3)$  можно считать недостаточно точными.

Сравнивая данные (4) и настоящей работы (расхождение 0,7 ккал/ /моль), можно указать, что давление фтора и величины навесок серы в

опытах, проведенных в (4), были в несколько раз выше, чем в наших опытах. Снижение давления фтора и навесок серы, а следовательно, температуры в зоне реакции позволило уменьшить вероятность искажения результатов за счет побочных тепловых эффектов, обусловленных высокой агрессивностью фтора. Не исключено, что этим объясняется небольшое завышение результата (4) по сравнению с данными настоящего исследования. Отметим, что в работе (5) было также получено несколько более низкое число, хотя в ней сжигался тот же образец серы, что и в (4). Содержание примесей в препаратах серы, использованных в данной работе и в (4), было весьма малым и поэтому неточность расчета поправок на примеси не могла в заметной степени повлиять на конечные результаты.

Наконец, в данной работе было выполнено песколько калориметрических опытов по сжиганию во фторе серы, полученной в результате дополнительной очистки прежнего образца методом отгонки примесей в вакууме (8). Результаты этих опытов практически не отличались от данных экспериментов, полученных с прежним препаратом серы. Это подтверждает высокую чистоту исходного образца серы, использованного для

калориметрических измерений.

Институт высоких температур и Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва

Поступило 30 I 1973

## цитированная литература

<sup>1</sup> D. M. Yost, W. N. Claussen, J. Am. Chem. Soc., 55, 885 (1933). <sup>2</sup> P. Gross, C. Hayman, D. L. Levi, 17th Intern. Congr. Pure Appl. Chem., Abstr., 1, 90 (1959). <sup>3</sup> P. Gross, Bull. Chem. Thermodynamics, № 3, 14 (1960). <sup>4</sup> P. A. G. O'Hare, J. L. Settle, W. H. Hubbard, Trans. Farad. Soc., 62, 558 (1966). <sup>5</sup> J. Schröder, F. I. Sieben, Chem. Ber., 103, 76 (1970). <sup>6</sup> B. C. Первов, Л. И. Клюев и др., ЖАХ, 26, 2196 (1971). <sup>7</sup> C. W. F. T. Pistorius, J. Chem. Phys., 29, 1328 (1958). <sup>8</sup> Природная сера, Под ред. М. А. Менковского, М., 1972. <sup>9</sup> Термические константы веществ, в. 1—5, Изд. АН СССР, 1965—1971.

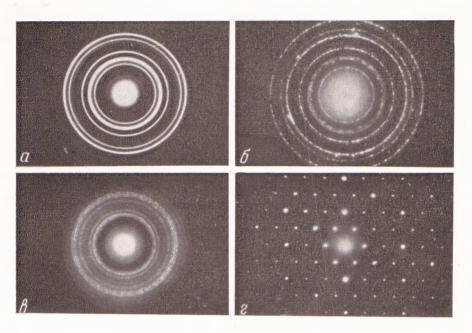



Рис. 1. Микроэлектронограммы продуктов коррозии железа:  $a-{\rm Fe_3O_4};~ b-\gamma-{\rm FeOOH};~ s-\alpha-{\rm FeOOH};~ z-\delta-{\rm FeOOH}~(илоскость~001)$