УДК 620.17:541.18

ТЕХНИЧЕСКАЯ ФИЗИКА

В. И. ЛОБОЙКО, С. И. МИКИТИШИН, И. И. ВАСИЛЕНКО, академик АН УССР Г. В. КАРПЕНКО

ЗАВИСИМОСТЬ ПРЕДЕЛА ПРОЧНОСТИ МЕТАЛЛА ОТ ХАРАКТЕРА ВЗАИМОДЕЙСТВИЯ СО СРЕДОЙ

Известно (1, 2), что изменение поверхностной энергии твердых тел на границе с окружающей средой влияет на процессы их деформирования и разрушения. Поэтому исследования по изменению ее под воздействием поверхностно-активных сред могут дать новую информацию о механизме разрушения деформированного материала, а также необходимые физические предпосылки для прогнозирования его физико-механических свойств (3).

Настоящая работа посвящена исследованию влияния водорода, кислорода, гелия, гексана, этилового спирта, дистиллированной воды и атмосферы на предел прочности и электросопротивление тонких ($\varnothing=100\mu$) стальных (сталь 65 Γ) и вольфрамовых ($\varnothing=8\mu$) проволочек длиной 400 мм.

Электросопротивление измеряли при температуре 20° С на одинарном мосте постоянного тока МОД-61 нулевым методом с точностью $\pm 0,005$ ом. Перед измерениями поверхность испытуемых образцов обезжиривали и для удаления влаги производили вакуумный отжиг (10^{-6} мм рт. ст., 500° С, 15 мин. — стальных; 10^{-6} мм рт. ст., 1800° , 15 мин. — вольфрамовых проволок). Газы перед впуском в ячейку тщательно очищали от влаги (* , 5).

Из результатов испытаний проволок на разрыв (табл. 1) видно, что предел прочности $\sigma_{\rm B}$ более чувствителен к воздействию среды у проволок меньшего диаметра. Здесь, как и в случае изменения электросопротивления, влияние среды зависит от соотношения между поверхностью проволоки и поперечным ее сечением. Вакуум 10^{-6} мм рт. ст., гелий и гексан

Таблица 1

Среда	Вольфрамовая про-		Стальная проволока	
	о _{в, кг/мм²}	$\Delta R/R$, %	о _{в,} кг/мм²	$\Delta R/R$, %
Вакуум 10 ⁻⁶ мм рт. ст. Гелий Гексан Водород Этиловый спирт (обезвоженный) Кислород Этиловый спирт (контактирующий с воздухом) Воздух Дистиллированная вода	420 415 415 370 345 340 336 331 290	$ \begin{array}{r} -0,1\\ -0,1\\ -2,7\\ -3,7\\ +4,3\\ -5,5 \end{array} $	129 128 128 117 113 115 109	$ \begin{array}{c} -0,07 \\ -0,07 \\ -0,3 \\ -0,46 \\ +0,53 \\ -0,62 \\ -0,62 \\ -0,7 \end{array} $

практически не влияют на предел прочности вольфрама и стали, т. е. слабая физическая адсорбция не вызывает понижения прочности проволок; молекулярный водород, этиловый спирт, воздух и вода значительно понижают прочность проволок, при этом воздух сильнее влияет на прочность проволок, чем обезвоженный водород и спирты. Кроме того установлено, что обезвоженный спирт (не контактирующий с воздухом) приводит к

значительно меньшему эффекту снижения прочности, чем спирт, не очищенный от влаги. Из исследуемых сред наибольшее влияние на прочность

проволок оказывает вода и воздух.

Для обоснования эффектов необходимо было исследовать природу связи адсорбированных атомов и молекул сред с поверхностью проволок. С этой целью измеряли изменения электросопротивления металла непосредственно в ходе адсорбции. Исследования показали, что для вольфрамовых и для стальных проволок имеет место однотипный характер изменения электросопротивления от количества адсорбата.

Электросопротивление вольфрамовой и стальной проволок под влиянием кислорода сначала резко возрастает, но уже при давлении 10^{-3} мм рт. ст. достигает максимума и при дальнейшем повышении давления остается приблизительно постоянным. Можно допустить, что в этом случае дополнительно адсорбированный кислород химически не взаимодействовал с поверхностью исследуемых проволок. Пары воды, этилового спирта и газообразного водорода вызывают уменьшение электросопротивления, причем для паров воды максимум уменьшения электросопротивления достигается при давлении порядка 10^{-4} мм рт. ст., тогда как для этилового спирта и газообразного водорода — при давлении 10^{-4} мм рт. ст. Пары гексана и газообразного гелия, очищенного от влаги, не вызывают изменения электросопротивления исследуемых образцов, что можно объяснить малой поляризующей способностью вольфрама и стали по отношению к данным средам.

Полученные данные говорят, что пары воды, этилового спирта и газообразного водорода по отношению к поверхности вольфрамовых и сталь-

ных проволок являются донорами электронов.

Исследование характера взаимодействия молекул воды с поверхностью вольфрамовых проволок привело авторов работы к выводу о том, что атом кислорода молекулы воды притягивается металлом, чего не наблюдается у атомов водорода. Очевидно, при адсорбции молекул воды на проводящих ток поверхностях неспаренные электроны атома кислорода могут стать частью электронного газа поверхности металла и снизить тем самым

элекросопротивление исследуемых образцов.

Спирт, подобно воде, обладая π -связью, также передает электроны металлам, вследствие чего понижает их электросопротивление. С другой стороны, кислород, являясь акцентором, «оттягивает» электроны проводимости с поверхности металла, в результате чего электросопротивление увеличивается. Изменение электросопротивления при адсорбции водорода можно объяснить способностью атома водорода передавать электрон проводимости поверхности. Из полученных экспериментальных данных следует, что все исследуемые среды, кроме гелия и гексана, взаимодействуют с поверхностью вольфрама и стали и вызывают изменение их электросопротивления.

Откачка среды из рабочей камеры приводит к неполному восстановлению исходных (до адсорбции) значений электросопротивления, т. е. лишь к частичной десорбции молекул. Даже многочасовая откачка до 10^{-6} мм рт. ст. при комнатной температуре не приводит к полному восстановлению электросопротивления. Доля необратимого значения электросопротивления при действии используемых адсорбатов изменяется на $30-72\,\%$ от своего максимального значения (возрастает от водорода к воде).

Изменения электросопротивления в процессе адсорбции и десорбции исследуемых сред свидетельствуют об обратимой и необратимой адсорбции их на поверхности. Обратимую часть изменения электросопротивления, по-видимому, можно связать с дефектами решетки или полимолекулярной адсорбции, в то время как необратимую часть изменения электросопротивления можно объяснить химический адсорбцией молекул среды.

Данные исследования указывают на полную корреляцию между изменением предела прочности и электросопротивления при адсорбции на поверхности металла сред, что характеризует влияние исследуемых сред на металл, а также на роль воды при его разрушении в воздухе.

Физико-механический институт Академии наук УССР Львов Поступило 12 III 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. И. Лихтман, П. А. Ребиндер, Г. В. Карпенко, Влияние поверхностно-активной среды на процессы деформации металлов, Изд. АН СССР, 1954. ² В. И. Лихтман, Е. Д. Щукин, П. А. Ребиндер, Физико-химическая механика материалов, Изд. АН СССР, 1962. ³ Г. В. Карпенко, Физ.-хим. мех. матер., 3, № 5, 503 (1967). ⁴ В. И. Лобойко, И. И. Василенко и др., там же, № 1, 46 (1972). ⁵ Ф. М. Раппопорт, Лабораторные методы получения чистых газов, 1963.