УДК 517.947

MATEMATUKA

В. И. ШЕВЧЕНКО

ОБ ЭЛЛИПТИЧЕСКИХ СИСТЕМАХ ТРЕХ УРАВНЕНИЙ С ЧЕТЫРЬМЯ НЕЗАВИСИМЫМИ ПЕРЕМЕННЫМИ

(Представлено академиком И. Н. Векуа 16 Х 1972)

Примеры эллиптических систем двух уравнений второго порядка с двумя независимыми переменными, для которых задача Дирихле не нётерова, впервые были указаны А. В. Бицадзе (4 , 2). В дальнейшем примеры типа А. В. Бицадзе для эллиптических систем с n > 2 переменными в едпничном шаре строились Е. Н. Кузьминым (3), Ю. Т. Антохиным (4) и В. С. Виноградовым (5). Во всех этих примерах число уравнений было четным. Вместе с тем Б. В. Боярский (6) показал, что для эллиптических систем двух уравнений в случае n > 2 задача Дирихле всегда нётерова

В этой заметке мы укажем эллиптическую систему трех уравнений второго порядка с четырьмя независимыми переменными, для которой однородная задача Дирихле в шаре имеет бесконечно много решений, и получим оценку снизу для числа компонент связности множества таких систем любого порядка.

На аналогичный пример в полупространстве указал С. Г. Михлин ((⁷), § 45) в связи с исследованием краевых задач теории упругости (см. также (⁸)).

В четырехмерном эвклидовом пространстве рассмотрим эллиптическую систему для вектора $u(u_1, u_2, u_3)$:

$$\frac{\partial^2 u_1}{\partial x_4^2} + \frac{\partial^2 u_1}{\partial x_1^2} - \frac{\partial^2 u_1}{\partial x_2^2} - \frac{\partial^2 u_1}{\partial x_3^2} + 2\frac{\partial^2 u_2}{\partial x_1 \partial x_2} - 2\frac{\partial^2 u_2}{\partial x_3 \partial x_4} + 2\frac{\partial^2 u_3}{\partial x_1 \partial x_3} + 2\frac{\partial^2 u_3}{\partial x_2 \partial x_4} = 0,$$

$$2\frac{\partial^2 u_1}{\partial x_1 \partial x_2} + 2\frac{\partial^2 u_1}{\partial x_3 \partial x_4} + \frac{\partial^2 u_2}{\partial x_4^2} + \frac{\partial^2 u_2}{\partial x_2^2} - \frac{\partial^2 u_2}{\partial x_2^2} - \frac{\partial^2 u_2}{\partial x_3^2} + 2\frac{\partial^2 u_3}{\partial x_2 \partial x_3} - 2\frac{\partial^2 u_3}{\partial x_1 \partial x_4} = 0,$$

$$2\frac{\partial^2 u_1}{\partial x_1 \partial x_3} - 2\frac{\partial^2 u_1}{\partial x_2 \partial x_4} + 2\frac{\partial^2 u_2}{\partial x_2 \partial x_3} + 2\frac{\partial^2 u_2}{\partial x_1 \partial x_4} + \frac{\partial^2 u_3}{\partial x_4^2} + \frac{\partial^2 u_3}{\partial x_3^2} - \frac{\partial^2 u_3}{\partial x_1^2} - \frac{\partial^2 u_3}{\partial x_2^2} = 0.$$

В единичном шаре $|x|^2 = x_1^2 + x_2^2 + x_3^2 + x^2 \le 1$ (однородная) задача Дирихле для системы (1) с краевым условием u(x) = 0 на сфере |x| = 1 имеет бесконечно много линейно-независимых решений

$$u(x) = (1 - |x|^2) \operatorname{grad} \varphi(x),$$
 (2)

где $\varphi(x)$ — любая гармоническая функция от переменных x_1 , x_2 , x_3 , не зависящая от x_4 . В формуле (2) градиент берется по переменным (x_1 , x_2 , x_3). Проверка того факта, что вектор (2) удовлетворяет системе (1), не составляет труда.

Система (1) позволяет получить информацию о гомотопическом строении множества эллиптических систем трех уравнений с четырьмя независимыми переменными. История вопроса о гомотопической классификации

коротко освещена в (9).

 $T\,e\,o\,p\,e\,m\,a.$ Множество вещественных эллиптических систем трех уравнений порядка $s\,c\,$ четырымя независимыми переменными $c\,$ положитель-

1300

ным характеристическим определителем (коэффициенты постоянны) име-

ет по крайней мере s+1 компоненту связности.

Обозначим через $L(\xi)$ характеристическую матрицу системы (1). Ее детерминант, равный $|\xi|^6$, положителен при $|\xi|^2 = \xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_4^2 > 0$. В дальнейшем будем говорить сразу о гомотопии характеристических матриц. Первая строка $L(\xi)$ осуществляет отображение η :

$$\begin{split} \eta_1 &= \xi_4^2 + \xi_1^2 - \xi_2^2 - \xi_3^2, \\ \eta_2 &= 2\xi_1\xi_2 - 2\xi_3\xi_4, \\ \eta_3 &= 2\xi_1\xi_3 + 2\xi_2\xi_4 \end{split} \tag{3}$$

трехмерной сферы $S'\{|\xi|=1\}$ в двумерную $S\{|\eta|=1\}$. Для доказательства теоремы в случае s=2 вычислим инвариант Хопфа этого отображения. Согласно Уайтхеду (см. (10), стр. 203), инвариант Хопфа γ отображения η вычисляется следующим образом. Пусть ω такая 2-форма на S, что $\int_{S} \omega = 1$. Тогда $\eta^*\omega$ есть 2-форма на S' и существует 1-форма Ω , для которой $d\Omega = \eta^*\omega$. Инвариант Хопфа дается формулой

$$\gamma = \int_{S'} \Omega / \eta^* \omega,$$

где знак / обозначает внешнее произведение форм.

В нашем случае в качестве о можно взять (знак / опущен)

$$\omega = \frac{1}{4\pi} (\eta_1 \, d\eta_2 \, d\eta_3 - \eta_2 \, d\eta_1 \, d\eta_3 + \eta_3 \, d\eta_1 \, d\eta_2).$$

Из формулы (3) с учетом соотношения

$$\xi_1 d\xi_1 + \xi_2 d\xi_2 + \xi_3 d\xi_3 + \xi_4 d\xi_4 = 0$$

получаем

$$\eta^* \omega = \frac{1}{\pi} (d\xi_2 d\xi_3 - d\xi_1 d\xi_4)$$

$$\Omega = \frac{1}{2\pi} (-\xi_1 d\xi_4 + \xi_2 d\xi_3 - \xi_3 d\xi_2 + \xi_4 d\xi_1),$$

$$\gamma = -\frac{1}{2\pi^2} \int_{S'} (\xi_1 d\xi_2 d\xi_3 d\xi_4 - \xi_2 d\xi_1 d\xi_3 d\xi_4 + \xi_3 d\xi_1 d\xi_2 d\xi_4 - \xi_4 d\xi_1 d\xi_2 d\xi_4). \tag{4}$$

Применение формулы Стокса к интегралу (4) дает $\gamma = -1$.

Если в матрице $L(\xi)$ изменить знак у ξ_2 и ξ_4 , то получится новая матрица $L'(\xi)$, для которой $\gamma=1$, ибо форма ω сменит знак. Для матрицы $|\xi|^2 e$, отвечающей системе трех уравнений Лапласа, очевидным образом $\gamma=0$. Построенные три матрицы принадлежат разным компонентам связности, так как если бы они были гомотопны, то их первые строки имели бы одинаковый инвариант Хопфа.

Рассмотрим общий случай s>2. Из эллиптичности следует, что s четно, s=2k. Пусть $p(\xi)$ — отображение трехмерной сферы $|\xi|=1$ в трехмерную, компонентами которого являются однородные полиномы от ξ_1 , ξ_2 , ξ_3 , ξ_4 степени k, и пусть σ — вращение поля $p(\xi)$ по терминологии M. А. Красносельского (11). Тогда $L(p(\xi))$ — однородный матричный полином степени 2k=s. Заменяя в формуле (4) ξ на $p(\xi)$ и переходя к локальным координатам на сфере S', нетрудно получить равенство $\gamma=-\sigma^*$, откуда следует, что для матрицы $L'(p(\xi))$ $\gamma=\sigma$.

Пропорциональность чисел ү и о, вообще говоря, известна.

Выбирая в качестве $p(\xi)$ отображения указанного выше вида с вращением $\sigma=0,\ 1,\ \ldots,\ k$ (способ построения таких полей указан в работе (*)), получим по формулам $L(p(\xi))$ и $L'(p(\xi))$ s+1 матричный полином степени s, для которых $\gamma=k,\ k-1,\ \ldots,\ 0,\ \ldots,\ -k+1,\ -k,$ так что построенные системы негомотопны.

Институт прикладной математики и механики Академии наук УССР Донецк Поступило 4 X 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Бицадзе, УМН, 3, в. 6, 211 (1948). ² А. В. Бицадзе, Уравнения смешанного типа, Изд. АН СССР, 1959. ³ Е. Н. Кузьмин, Дифференциальные уравнения, 3, № 1, 155 (1967). ⁴ Ю. Н. Антохин, там же, 2, № 4, 525 (1966). ⁵ В. С. Виноградов, ДАН, 179, № 4, 766 (1968). ⁶ Б. В. Боярский, Бюлл. Польской АН, сер. матем., астр. и физ. наук, 8, № 1, 19 (1960). ⁷ С. Г. Михлин, Многомерные сингулярные интегралы и интегральные уравнения, 1962. ⁸ В. И. Шевченко, Докл. АН УССР, № 7, 614 (1970). ⁹ В. И. Шевченко, Докл. АН УССР, № 2, 138 (1970). ¹⁰ Х. Уитни, Геометрическая теория интегрирования, ИЛ, 1960. ¹¹ М. А. Красносельский, Топологические методы в теории нелинейных интегральных уравнений, 1956.