УДК 513.83

MATEMATUKA

В. И. МАЛЫХИН

НЕНОРМАЛЬНОСТЬ НЕКОТОРЫХ ПОДПРОСТРАНСТВ βX , ГДЕ X — ДИСКРЕТНОЕ ПРОСТРАНСТВО

(Представлено академиком П. С. Александровым 28 XI 1972)

В работе доказывается ненормальность некоторых подпространств Чех-Стоуновского расширения дискретного пространства произвольной мощности, в частности, решается известная (1) задача о ненормальности

нароста над натуральным рядом без Р-точки ([СН]).

Введем некоторые определения и обозначения. Фильтр Ф на X и замкнутое множество $\Phi^* = \bigcap \{[A]_{\beta X} : A \in \Phi\}$ отождествляются. Поэтому Φ — ультрафильтр, если и только если $|\Phi| = 1$. Если $[A]_{\beta X} \cap \Phi \neq \Lambda$, то будем говорить, что A касается фильтра Φ и записывать это так: $A^* \cap \Phi \neq \Lambda$.

Пусть (X, τ) — топологическое пространство и $A \subset X$, $B \subset X$. Будем писать, что $t(A, B) \leq (<)m$, если $m = \min \{n: \text{если } M \subset B, [M] \cap A \neq \Lambda$, то существует $C \subset M$, $|C| \leq (<)n$, $[C] \cap A \neq \Lambda$. (Это несколько отли-

чается от аналогичного понятия, введенного в (2).)

Пусть (X, Φ) — множество с фильтром. Теснота фильтра Φ есть $t(\Phi, X)$. Если X — дискретное пространство, то βX отождествляется с пространством ультрафильтров на X. Назовем ультрафильтр x (m)-, (< m)-, $(\le m)$ -, (> m), и т. д. - ультрафильтром, если существует база ультрафильтра из множеств соответствующей мощности. Соответственно этому обозначим $[X]_m = \{x \in \beta X: x - m$ -ультрафильтр $\}$ и т. д. Заметим, что $[X]_{\le m} = \bigcup \{[A]_{\beta x}: |A| \le m\}$, поэтому будем для произвольного топологического пространства писать $[A]_{\le m} = \bigcup \{[B]: B \subset A, |B| \le m\}$.

Иногда дискретное множество X и его мощность будут отождествляться. Тогда символы βn , $[n]_{< m}$ и т. д. обозначают соответствующие подпро-

странства βX .

Теорема 1. $[m]_{< n}$ \setminus m ненормально, если и только если ненормаль-

но [т] < п.

Доказательство. Пусть |X|=m, рассмотрим на X систему мощности m счетных попарно дизъюнктных множеств $\{A_t\colon t\in T,\ |T|=m\}$. Обозначим $Y=\{y_t\colon y_t\in [A_t]_{\beta X}\setminus A_t\}$. Так как βX —экстремально-несвязный бикомпакт, то $[Y]_{\beta X}=\beta m$.

Легко видеть, что $[Y]_{< n} = [m]_{< n}$ лежит замкнуто в $[m]_{< n} \setminus m$, следо-

вательно, $[m]_{\leq n} \setminus m$ ненормально.

Определение. Назовем п ненормальным кардиналом,

если $[n]_{< n}$ ненормально.

Предложение 1. Если n- сингулярный кардинал, r. e. k= = cf(n) < n, ron- ненормальный кардинал *.

Для доказательства приведем несколько лемм.

Лемма 1. Пусть $x \in \beta X$. Тогда $t(\{x\}, X) = \Delta x = \min_{x \in [A]_{\beta X}} \{|A|: A \in A\}$

Действительно, если $A \subset X$, то $A \in x$.

^{*} cf (n) — конфинальный характер кардинала n. Это наименьший из кардиналов |K| таких, что $X = \Sigma\{X_t: t \in K\}, |X_t| < |X|;$ если $K' \subset K, |K'| < |K|,$ то $|\Sigma\{X_t: t \in K'\}| < |X|$, но если |K'| = |K|, то $|\Sigma\{X_t: t \in K'\}| = |X|$.

Лемма 2. Если $t(\Phi) < m$ (здесь $\Phi - \phi$ ильтр на X), то $[\Phi \cap [X]_{< m}]_{\beta X} = \Phi$.

Верно и обратное.

Пусть $[\Phi \cap [X]_{< m}]_{\beta X} = \Phi$. Если $A \subset X$, $[A]_{\beta X} \cap \Phi \neq \Lambda$, то существует $x \in [A]_{\beta X} \cap \Phi \cap [X]_{< m}$, но тогда $\Delta x < m$ и по лемме 1 $t(\{x\}, X) < m$. Следовательно, в A есть B, |B| < m, $x \in [B]_{\beta X}$. Тем самым $[B]_{\beta X} \cap \Phi \neq \Lambda$.

Обратное доказывается аналогично.

Докажем теперь предложение 1. Пусть |X| = n, $X = \Sigma \{X_t: t < \omega(k)\}$, где $k = \mathrm{cf}(n)$ и сумма (дизъюнктная) построена в соответствии с определением $\mathrm{cf}(n)$. На всяком X_t возьмем фильтр Φ_t с базой $\{A_t^{\alpha}\}$, причем база есть система $\{A_t^{\alpha}: \alpha < \omega(k)\}$, если $\alpha < \beta$, то $A_t^{\alpha} = A_t^{\beta}$. Кроме того, $|A_t^{t} \setminus A_t^{t+1}| = |X_t|$ и на $A_t^{t} \setminus A_t^{t+1}$ рассмотрим произвольный фильтр F_t , которого не касается никакое подмножество мощности, меньшей, чем $|X_t|$.

Рассмотрим теперь на X два фильтра E_i . $A \subseteq E_1$, если $A \supset \Sigma\{A_i^{\alpha}: t < < \omega(k)\}$, α фиксировано и свое для каждого A. $A \subseteq E_2$, если $A \supset \Sigma\{B_t:$

 $B_t \in F_t, \ t < \omega(k)$.

1) $t(E_i) \leq k$. Это очевидно, ибо мощность базы фильтра $E_i \leq k$.

2) $t(E_2) \le k$. Действительно, если $[A]_{\beta X} \cap F_t = \hat{\Lambda}$ для всякого t, то $\Lambda = A \cap \Sigma \{R_t : R_t = X_t \setminus A, t < \omega(k)\}$, т. е. $A^* \cap E_2 = \Lambda$. Если же $A^* \cap F_{t_0} \neq \Lambda$, то так как $t(F_{t_0}) \le |X_{t_0}| < n$, то существует $B \subseteq A$, |B| < n и $B^* \cap F_{t_0} \neq \Lambda$ и тем самым $B^* \cap E_2 \neq \Lambda$.

Итак, по лемме 2 $[E_i \cap [X]_{\leq n}]_{\beta X} = E_i$. Докажем, что $E_1 \cap E_2 \cap E_3 \cap E_4$

 $\cap [X]_{< n} = \Lambda$, но $E_1 \cap E_2 \neq \Lambda$. Последнее очевидно, нбо $X \in E_1 \cap E_2$.

Предположим, что $A \subset X$, |A| < n. Существует $t_i < \omega(k)$ такой, что $t(F_t) > |A|$ при $t > t_1$. (Очевидно, можно предполагать, что слагаемые X_t идут, возрастая по мощности.) Тогда $A^* \cap F_t = \Lambda$ для всех $t > t_1$. Легко проверить, что $A \cap V_1 \cap V_2 = \Lambda$, где $V_i = \Sigma\{A_1^{t_i+1}: t < \omega(k)\}$, а $V_2 = \Sigma\{B_t: B_t = X \setminus A_t^{t_i+1} \text{ при } t \leq t_1, \text{ и } B_t = X_t \setminus A \text{ при } t > t_1\}$. Следовательно, в $[X]_{< n}$ существуют два дизъюнктных замкнутых множества, замыкания которых пересекаются в $\beta X = \beta([X]_{< n})$. Это было бы невозможно, если бы $[X]_{< n}$ было нормально.

Предложение 2. Если существует k < n, $2^k \ge n$, то n -«ненор-

мальный» кардинал.

Доказательство. Пусть |K|=k, $D_1=D^n$ (здесь D — несвязное двоеточие). Существует отображение f: $\beta K \to D_1$, которое мы предположим «на» и которое, очевидно, замкнуто. Так как $t\left(\{d\},D_1\right)=n$ для любой точки $d\in D_1$, то существует замкнутое множество $\Phi\subset \beta K\setminus K$ и система $\Delta=\{\Phi_\alpha\}$ замкнутых множеств из $\beta K\setminus K$ со следующими свойствами:

1) Если $\Delta' \subset \Delta$, $|\Delta'| < n$, то $\Phi \cap [\cup \Delta']_{\beta K} = \Lambda$. 2) Однако если $|\Delta'| = n$, то $\Phi \cap [\cup \Delta']_{\beta K} \neq \Lambda$.

Рассмотрим множество $R = \Sigma \{K_{\alpha} : \alpha \in \Delta\}$, где K_{α} — точная коппя множества K, на котором из всей системы фильтров оставим только Φ и Φ_{α} . Определим теперь фильтр F_1 так: $A \in F_1$, если $A \supset \Sigma \{P_{\alpha} : P_{\alpha} = B, B \in \Phi\}$,

а фильтр F_2 так: $A \subseteq F_2$, если $A \supset \Sigma \{P_\alpha \colon P_\alpha \subseteq \Phi_\alpha\}$.

Заметим, что $t(F_i) \le k$. Докажем, что $t(F_1 \cap F_2) > k$, а именно: $t(F_1 \cap F_2) = n$. Пусть $V \subset R$ и |V| < n. Обозначим $V_1 = \Sigma \{K_\alpha \colon K_\alpha \cap V \ne \ne \Lambda\}$. Ясно, что $|V_1| < n$. Но тогда существуют множества $B \in \Phi$ и $B_\alpha \in \Phi_\alpha$ для всех таких α , что $K_\alpha \cap V \ne \Lambda$, такие, что $B \cap B_\alpha = \Lambda$. Следовательно, если $A_1 = \Sigma \{P_\alpha \colon P_\alpha = B\}$, а $A_2 = \Sigma \{P_\alpha \colon P_\alpha = B_\alpha$, если $K_\alpha \cap V_1 \ne \Lambda$ и $P_\alpha = K_\alpha$ в противном случае $\}$, то $V_1 \cap A_1 \cap A_2 = \Lambda$, т. е. V_1 не касается фильтра $F_1 \cap F_2$. Однако $F_1 \cap F_2 \ne \Lambda$, ибо всегда $A_1 \cap A_2 \ne \Lambda$, если $A_i \in F_i$. Итак, $t(F_1 \cap F_2) = n$.

Чтобы завершить доказательство, заметим, что так как $t(F_i) \leq k$, то $[F_i \cap [R]_{\leq k}]_{\geqslant R} = F_i$, а $F_i \cap F_2 \cap [R]_{\leq n} = \Lambda$, хотя $F_i \cap F_2 \neq \Lambda$, тем самым

 $[R]_{< n}$ ненормально, т. е. n — ненормальный кардинал.

Следствие 1 (А. В. Архангельский). Для всякого кардинала т существуют пространства X' такие, что $t(X_i') \leq m$, но $t(X_i \times X_2) > m$.

Действительно, подпространство $[m^+]_{< m^+}$ ненормально по предложению 2, т. е. существуют на множестве X два фильтра F_i , $t(F_i) \leq m$, но $t(F_1 \cap F_2) > m$. Пусть (X_1, F_1) , (X_2, F_2) — копии множества X, причем на каждой копии оставлено по фильтру. Можно теперь убедиться, что $t(X_1' \times X_2') > m$. Здесь $X_i' = X_i \cup \{F_i\}$, а топология такая: все точки из X_i изолированные, а фильтр окрестностей точки $\{F_i\}$, суженный на X_i , есть F_{i} .

Из предложений 1 и 2 вытекает теорема 2. Если $\aleph_0 < n < \varepsilon_1 *$, то n ненормальный кардинал, а пространство $[m]_{< n}$ — дискретное пространство

мощности $(n \le m)$ ненормально.

Последнее очевидно, ибо если $A \subset X$, |X| = m, |A| = n, то $[A]_{<\pi}$ лежит замкнуто в $[X]_{< n}$ и потому $[X]_{< n}$ ненормально.

Нерешенная задача. ε₁ — нормальный кардинал? Заметим, что среди больших, чем ε₁, кардиналов опять-таки много ненормальных (скажем, по предложению 2) кардиналов.

Теорема 3. $[m]_n$ ненормально при $\aleph_0 \leq n < m$.

Пусть |X| = m. Рассмотрим на X систему дизъюнктных подмножеств $\{X_t: t \in T, |T| = n^+, |X_t| = n\}$ и пусть $y_t \in [X_t]_n$, а $Y = \{y_t: t \in T\}$. Легко видеть, что $[Y]_{< n^*}$ лежит замкнуто в $[m]_n$ п, так как $[Y]_{< n^*} = [n^+]_{< n^*}$ ненормально (по предложению 2), то и $[m]_n$ ненормально.

Следствие 1 (из теоремы 1 и теоремы 2, из теоремы 3) [СН]. Eсли N- счетное дискретное пространство, а р- P-точка (3) в $\beta N \setminus N$, то

 $\beta N \setminus N \setminus \{p\}$ ненормально.

Действительно, как замечено в (1), $\beta N \setminus N \setminus \{p\}$ гомеоморфно $[\aleph_1]_{\aleph_0}$

которое ненормально в силу теоремы 3.

Пусть $\{A_{\alpha}: \alpha < \omega_1\}$ — совокупность открыто-замкнутых окрестностей P-точки p в $\beta N \setminus N$, убывающих и образующих базу этой точки. Можно проверить, что если $p_{\alpha} \equiv A_{\alpha} \setminus A_{\alpha+1}, \ p_{\alpha} - P$ -точка, то $[M]_{\leqslant \aleph_0}$ гомеоморфно $[M_d]_{\leqslant \aleph_0}$ (где $M = \{p_{\alpha}: \ \alpha < \omega_1\}$, которое ненормально по предложению 2. Но $[M]_{\leqslant \aleph_0}$ лежит замкнуто в $N^* \setminus \{p\} = \beta N \setminus N \setminus \{p\}$. Следовательно, $\beta N \setminus N \setminus \{p\}$ ненормально, что дает еще одно доказательство этого (кроме следствия 1).

Приведем несколько нерешенных задач, связанных с тематикой дан-

ной статьи.

1) Найти точку $x \in \beta N \setminus N$, для которой $\beta N \setminus \{x\}$ $(\beta N \setminus N \setminus \{x\})$ ненормально (не прибегая к теоретико-множественным гипотезам).

2) То же для высших кардиналов.

3) Доказать, что $t(\{x\}, \beta X) > \Delta x$ для любой точки $x \in \beta X \setminus X$. Если

 $\Delta x = \aleph_0$, то это так (4).

Примечание при корректуре. Автору стала известна работа (5), в которой содержится частный случай теоремы 2 (а также следствие 1) при $n = \aleph_1$

Московский государственный университет им. М. В. Ломоносова

Поступило-1 XI 1972

цитированная литература

¹ W. W. Comfort, S. Negrepoutis, Math. Zs., 107, № 1 (1968). ² А. В. Архангельский, ДАН, 206, № 2 (1972). ³ W. Rudin, Duke Math., 23, № 3, 409 (1956). ⁴ В. И. Малыхин, ДАН, 206, № 6 (1972). ⁵ М. Warren Mancy, Proc. Am. Math. Soc., 33, 599 (1972).

 $^{^*}$ $arepsilon_1$ — первый регулярный кардинал такой, что если $n<arepsilon_1$, то $2^n<arepsilon_1$.