Г. П. НЕВАИ (ВЕНГРИЯ)

НЕКОТОРЫЕ СВОЙСТВА МНОГОЧЛЕНОВ, ОРТОНОРМАЛЬНЫХ С ВЕСОМ $(1+x^{2k})^{\alpha}e^{-x^{2k}}$, И ИХ ПРИМЕНЕНИЯ В ТЕОРИИ ПРИБЛИЖЕНИЯ

(Представлено академиком В. С. Владимировым 24 XI 1972)

Пусть v(x) — некоторая весовая функция, определенная на всей вещественной оси. Обозначим через $p_n(v,x)$, $n=0,1,2,\ldots$, многочлены, ортонормальные с весом v(x) на оси; $\psi_n(v,x,\xi)=p_{n-1}(v,\xi)p_n(v,x)=-p_n(v,\xi)p_{n-1}(v,x)$, $n=1,2,\ldots$,—квазиортогональные многочлены от переменной x; ξ^* — ближайший к точке ξ корень $\psi_n(v,x,\xi)$, расположенный между точками 0 и ξ (если такого ξ^* не существует, то положим $\xi^*=0$).

В настоящей заметке мы дадим оценку сверху для функций Кристоф-феля

$$\lambda_n(v, \xi) = \left[\sum_{j=0}^{n-1} p_j^2(v, \xi)\right]^{-1}, \quad n = 1, 2, \ldots,$$

и для расстояния между нулями квазиортогональных многочленов $\Delta_n(v,\,\xi)=|\xi-\xi^*|,\,n=1,\,2,\ldots,$ если весовая функция равняется $w(\alpha,k,x)=(1+x^{2k})^\alpha e^{-x^{2k}},\,k=1,2,\ldots\,;\,\alpha\geqslant 0.$

Обозначим через \mathbf{P}_n , $n=1,2,\ldots$, совокупность всех вещественных алгебраических полиномов $\pi_n(x)$ степени ниже n, $\mathbf{P}_n(t)$ состоит из тех полиномов $\pi_n(x) \subseteq \mathbf{P}_n$, для которых $\pi_n(t) \neq 0$; далее некоторое число со штрихом будет означать целую часть половины данного числа. Под c и a будем понимать положительные конечные постоянные, зависящие лишь от параметров k и α . Константы c даже в одной и той же формуле могут принимать различные значения.

Теорема 1. Пусть k — натуральное, α — неотрицательное числа, оба фиксированные. Тогда при $|\xi| < c n^{1/(2h)}$ имеем

$$\lambda_n(w,\xi) \leqslant c n^{-1+1/(2h)} w(\alpha,k,\xi), \tag{1a}$$

$$\Delta_n(w,\xi) \leqslant c n^{-1+1/2h}. \tag{16}$$

Отметим, что для случая $\alpha=0$ неравенство (1a) доказано в (¹), а (1б) — в (²). На основе общих свойств ортогональных многочленов теорему 1 легко вывести из следующего предложения. Пусть $u(\alpha, k, x) = 0$ при $-\infty < x \le 0$ и $u(\alpha, k, x) = x^{-1/2}w(\alpha, k, \sqrt[7]{x})$ при $0 < x < \infty$.

Теорема 1'. Если $0 \le \xi < cn^{1/h}$, то тогда

$$\lambda_n(u,\xi) \leqslant c n^{-1+1/(2k)} w(\alpha,k,\sqrt{\xi}), \tag{2a}$$

$$\Delta_n(u,\xi) \leqslant c\sqrt{\xi} n^{-1+1/(2k)}. \tag{26}$$

 Π е м м а. Существуют полиномы ρ_n и τ_n из P_n , для которых

$$1/3e^x \le \rho_n(x), \ 0 \le x \le e^{-3}n, \quad 0 \le \rho_n(x) \le e^x, \quad 0 \le x < \infty,$$
 (3)

 $n=1, 2, \ldots, u \text{ npu scex } \varepsilon > 0$

$$1/2(1+x)^{-\alpha/2} \le \tau_n(x) \le 2(1+x)^{-\alpha/2}, \quad 0 \le x \le \varepsilon n,$$
 (4)

если только $n > n_0(\alpha, \varepsilon)$.

Доказательство. Легко видеть, что $\rho_n(x) = \sum_{\nu=0}^{n-1} \frac{x^j}{j!}$ удовлетворяет неравенствам (3). Рассмотрим теперь функцию $\phi(x) = (1+x^2)^{-\alpha/2}$. В силу теоремы Джексона, примененной к отрезку $[-\sqrt{\epsilon n}, \sqrt{\epsilon n}]$, при всех $n=1,2,\ldots$ существует такой четный полином $\hat{\tau}_n(x) \in P_n$, что

$$|\varphi(x) - \hat{\tau}_n(x)| \leq dn^{-(\alpha+1)/2} \sup_{-\infty < x < \infty} |\varphi^{([\alpha+2])}(x)|, \quad |x| \leq \sqrt{\varepsilon n},$$

где d зависит лишь от α и ε . Полагая $\tau_n(x) = \tau_{2n}(\sqrt[7]{x})$, легко получить (4), ибо все производные функции $\phi(x)$ ограничены.

Доказательство (2a). Исходим из известного представления (cm. (3))

$$\lambda_n(u,\xi) = \min_{\pi_n \in \mathbf{P}_n(\xi)} \pi_n^{-2}(\xi) \int_0^\infty \pi_n^2(x) \, u(a,k,x) \, dx. \tag{5}$$

В (1) доказано, что

$$\int_{cm^{1/k}}^{\infty} \pi_m^2(x) x^{-1/2} e^{-x^k} dx \leqslant e^{-cm} \int_{0}^{cm^{1/k}} \pi_m^2(x) x^{-1/2} e^{-x^k} dx, \quad \pi_m \in \mathbf{P}_m.$$

Отсюда

$$\int_{0}^{\infty} \pi_{n}^{2}(x) u(\alpha, k, x) dx \leq \int_{0}^{cn^{1/k}} \pi_{n}^{2}(x) u(\alpha, k, x) dx +$$

$$+ \int_{cn^{1/k}}^{\infty} \pi_{n}^{2}(x) (1 + x^{k})^{2\alpha' + 2} x^{-1/2} e^{-x^{k}} dx \leq$$

$$\leq \int_{0}^{cn^{1/k}} \pi_{n}^{2}(x) u(\alpha, k, x) dx + e^{-cn} \int_{0}^{cn^{1/k}} \pi_{n}^{2}(x) (1 + x^{k})^{2\alpha' + 2} x^{-1/2} e^{-x^{k}} dx \leq$$

$$\leq 2 \int_{0}^{an^{1/k}} \pi_{n}^{2}(x) u(\alpha, k, x) dx, \quad n > n_{1}(k, \alpha).$$
(6)

Из формул (3) — (6) следует, что

$$\lambda_n(u,\xi) \leqslant cw(\alpha,k,\sqrt{\xi}) \min_{\pi_{n'} \in P_{n'}(\xi)} \pi_{n'}^{-2}(\xi) \int_0^{an^{1/k}} \pi_{n'}^2(x) x^{-1/2} dx, \quad 0 \leqslant \xi < cn^{1/k};$$

значит,

$$\begin{split} \lambda_n(u,\,\xi) &\leqslant c\,\,\sqrt{\,a}\,\,n^{1/(2k)}\,w\,(\alpha,\,k,\,\sqrt{\,\xi})\, \min_{\pi_{n'} \in \mathbf{P}_{n'}(\xi)} \pi_{n'}^{-2}\,(\xi) \,\times \\ &\times \int\limits_{-1}^0 \pi_{n'}^2\,(an^{1/k}\,(x+\,1))\,(x+\,1)^{-1/2}\,dx \leqslant cn^{1/2k}\,w\,(\alpha,\,k,\,\sqrt{\,\xi}) \,\times \\ &\times \min_{\pi_{n'} \in \mathbf{P}_{n'}(\xi a^{-1}n^{-1/k}-1)} \,\pi_{n'}^{-2}\,(\xi a^{-1}n^{-1/k}-1)\, \int\limits_{-1}^1 \,\pi_{n'}^2(x)\,(1-x^2)^{-1/2}\,dx, \quad 0 \leqslant \xi < cn^{1/k}. \end{split}$$

Этот последний минимум равняется значению в точке $\xi a^{-1} n^{-1/k} - 1$ n'-й функции Кристоффеля веса Чебышева $v(x) = (1-x^2)^{-\frac{1}{2}}, |x| \leq 1$, о котором известно, что оно не превосходит cn^{-1} , если только $|\xi a^{-1} n^{-1/k} - 1| \leq 1$ (см. (3)). Таким образом, неравенство (2a) доказано.

Доказательство (26). По неравенству Поссе (см. (3)) мы имеем

при §* > 0

$$\int\limits_{\mathbb{R}^*}^{\xi} x^{-1/2} (1+x^k)^{\alpha} dx \leqslant e^{\xi *^k} \lambda_n(u, \xi^*) + e^{\xi^k} \lambda_n(u, \xi),$$

значит, в силу неравенства (2a),

$$\int_{\xi^*}^{\xi} x^{-1/2} (1+x^k)^{\alpha} dx \leqslant c (1+\xi^k)^{\alpha} n^{-1+1/(2k)}, \qquad 0 < \xi < c n^{1/k}.$$
 (7)

Если $\xi^* \geqslant 1/2\xi$, то отсюда непосредственно вытекает (26), если же $0 < \xi^* < 1/2\xi$, то в силу (7)

$$\int_{\xi_2}^{\xi} x^{-1/2} (1+x^k)^{\alpha} dx \leq c (1+\xi^k)^{\alpha} n^{-1+1/(2k)}, \quad 0 < \xi < c n^{1/k},$$

т.е. $\sqrt{\xi} < cn^{-1+1/(2h)}$, и тем более справедливо (2б). Если же $\xi^* = 0$, то $\xi < x_2$, где $x_1 < x_2 < \ldots < x_n$ — корни $p_n(u,x)$. Далее, согласно теории моментов Гамбургера — Стилтьеса (см. (³)), $0 < x_2 < 1$ при $n > n_2(k,\alpha)$. Отсюда по неравенству Маркова — Стилтьеса (см. (³)) п по (2a)

$$\sqrt{\xi} < \sqrt{x_2} < c \int_0^{x_k} u(\alpha, k, x) dx < c \sum_{j=1, 2} \lambda_n(u, x_j) < c n^{-1+1/(2k)},$$

и (2б) доказано и для случая $\xi^* = 0$.

Укажем теперь два применения теоремы 1 в теории приближения алгебраическими полиномами. Ниже под $\|\cdot\|$ будем понимать обычную норму в $L_1 \equiv L_1(-\infty, \infty)$, а $w(x) \equiv w(\alpha, k, x) = (1 + x^{2k})^{\alpha} e^{-x^{2k}}$. Пусть измеримая функция F(x) такова, что $Fw \in L_1$. Обозначим через

$$\varepsilon_n^1(w, F) = \inf_{\pi_n \in \mathbf{P}_n} ||(F - \pi_n)w||, \quad n = 1, 2, \dots,$$

меру наилучшего взвешенного L_1 -приближения функции F(x) при помощи полиномов из P_n , а через

$$\omega^{1}(w, F, \delta) = \max_{0 \leq t \leq \delta} \|F(\cdot + t)w(\cdot + t) - Fw\| + \|\tau(\cdot \delta^{1/(2k+1)})^{2k-1}Fw\|,$$

 $\delta>0;\; au(x)=\min\;(1,|x|),\;$ обобщенный взвешенный L_{ι} -модуль непрерывности функции F(x).

Tеорема 2. Пусть $k=1,2,\ldots$ и $\alpha \geqslant 0$ фиксированы и F(x)-r= $=0, 1, \ldots$ раз итерированная примитивная функция от $F^{(r)}(x)$. Если $F^{(\tau)}w \in L_i$, το τοεδα

$$\varepsilon_n^1(w, F) \leqslant e_i^{(c+\tau)} n^{-r(1-1/(2k))} \omega^1(w, F^{(r)}, n^{-1+1/(2k)}), \quad n > r.$$

Теорема 3. Пусть k, α и F(x) такие же, как и выше. Пусть далее функция $F^{(au)}(x)$ имеет ограниченное изменение на вязком конечном интервале и

$$\int_{-\infty}^{\infty} w(\alpha, k, x) |dF^{(r)}(x)| < \infty.$$

Eсли $|F(x)| < c(1+x^{2s})$ $(-\infty < x < \infty;$ s фиксированное натуральное), то тогда для всех n(>2s) существуют такие два полинома p_n и P_n из \mathbf{P}_n , u T O

$$p_n(x) \leq F(x) \leq P_n(x), \quad -\infty < x < \infty,$$

ZL.

$$||[P_n - p_n]w|| \le bn^{-(1-1/(2h))(r+1)},$$

где константа в не зависит от п.

Для частного случая $\alpha = 0$ теорема 2 доказана в (1), а теорема 3 —

Математический институт Венгерской Академии наук Будапешт

Поступило 16 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Freud, Studia Math., № 2, 42 (1972). ² G. Freud, G. P. Névai, Acta Sci. Math. (Szeged) (in press). ³ G. Freud. Orthogonale Polynome, Budapest, 1969.