УДК 539.2+539.171+669-154

ФИЗИКА

И. А. НОВОХАТСКИЙ, В. И. ЛАДЬЯНОВ, академик АН УССР В. И. АРХАРОВ, В. П. ВЕЛЮХАНОВ

МЕТОД ДВУХ ИЗОТЕРМ В ДИФРАКТОГРАФИИ РАСПЛАВОВ

Предложенный в рамках квазиполикристаллической модели экстраполяционный метод позволил определить относительные доли структурных составляющих — кластеров $(\Psi_{\text{кл}})$ и разупорядоченной зоны $(\Psi_{\text{раз}})$ для жидких металлов (1-4). Поэтому представляется целесообразной разработка метода расшифровки дифрактограмм расплавов с учетом специфических характеристик их структурной микронеоднородности. Описываемый ниже метод (метод двух изотерм) позволяет получать более детальную информацию о структуре расплавов.

В соответствии с квазиполикристаллической моделью интенсивность рассеяния рентгеновских и других лучей I_{Σ} является аддитивной суммой парциальных интенсивностей для кластеров $I_{\rm кл}$ и разупорядоченной

зоны $I_{\text{раз}}$:

$$I_{\Sigma} = I_{\scriptscriptstyle \mathrm{K}\Pi} \Psi_{\scriptscriptstyle \mathrm{K}\Pi} + I_{\scriptscriptstyle \mathrm{pas}} \Psi_{\scriptscriptstyle \mathrm{pas}},$$

причем для однокомпонентных расплавов $\Psi_{\kappa\pi} + \Psi_{\text{pas}} = 1$.

Рассматривая рассеяние при двух каких-либо температурах (T' и T''), можно записать

для
$$T'$$
: $I'_{\Sigma} = I'_{\kappa_{\Lambda}} \Psi'_{\kappa_{\Lambda}} + I'_{pa3} \Psi'_{pa3},$ (1) для T'' : $I''_{\Sigma} = I''_{\kappa_{\Lambda}} \Psi''_{\kappa_{\Lambda}} + I''_{pa3} \Psi'_{pa3}.$

Предполагая, что в интервале температур T'-T'' не происходит структурных превращений и $I_{\text{кл}}'=I_{\text{кл}}''$, $I_{\text{раз}}=I_{\text{раз}}$, получим $I_{\text{кл}}=\frac{I_{\Sigma}'\Psi_{\text{раз}}''-I_{\Sigma}'\Psi_{\text{раз}}'}{\Psi_{\text{pas}}''-\Psi_{\text{pas}}'}$,

$$I_{\text{KJI}} = \frac{I_{\text{E}}' \Psi_{\text{pa3}}'' - I_{\text{E}}'' \Psi_{\text{pa3}}'}{\Psi_{\text{pa3}}'' - \Psi_{\text{pa3}}'}, \qquad (2)$$

$$I_{\text{pas}} = \frac{I'_{\Sigma} \Psi''_{\text{KM}} - I''_{\Sigma} \Psi'_{\text{KM}}}{\Psi''_{\text{KM}} - \Psi'_{\text{KM}}}.$$
 (3)

По найденным расчетным путем кривым угловых зависимостей $I_{\rm kn}$ и $I_{\scriptscriptstyle
m pas}$ методом Фурье-преобразования можно определить соответствующие им парциальные функции радиального распределения атомов для кластеров и разупорядоченной зоны:

$$4\pi r^2 \{\rho(r)\}_{K\Pi} = 4\pi r^2 \{\rho_0\}_{K\Pi} + \frac{2r}{\pi} \int_0^\infty S\{i(S)\}_{K\Pi} \sin Sr \, dS, \tag{4}$$

$$4\pi r^2 \{\rho(r)\}_{pa3} = 4\pi r^2 \{\rho_0\}_{pa3} + \frac{2r}{\pi} \int_0^\infty S\{i(S)\}_{pa3} \sin Sr \, dS, \tag{5}$$

где $\{\rho(r)\}_{\kappa\pi}$ и $\{\rho(r)\}_{\text{раз}}$ — число атомов соответственно в кластерах и разупорядоченной зоне, приходящихся на единицу объема (плотности атомов), на расстоянии r от атома, принятого за центральный; $\{\rho_0\}_{\scriptscriptstyle \rm RM}$ и $\{\rho_0\}_{\scriptscriptstyle \rm pas}$, $\{i(S)\}_{\text{кл}}$ и $\{i(S)\}_{\text{раз}}$ — парциальные плотности атомов и структурные факторы для кластеров и разупорядоченной зоны; $S = 4\pi \left(\sin \frac{1}{2} \theta \right) / \lambda - вол$ новая функция; θ — угол рассеяния.

Предполагая аддитивность распределения плотности расплава у по его структурным составляющим, по методу, изложенному выше (методу двух изотерм), можно записать

$$\{\gamma\}_{\text{kn}} = \frac{\gamma' \Psi_{\text{pa3}}^{''} - \gamma'' \Psi_{\text{pa3}}^{'}}{\Psi_{\text{pa3}}^{''} - \Psi_{\text{pa3}}^{'}}, \quad \{\gamma\}_{\text{pa3}} = \frac{\gamma' \Psi_{\text{kn}}^{''} - \gamma'' \Psi_{\text{kn}}^{'}}{\Psi_{\text{kn}}^{''} - \Psi_{\text{kn}}^{'}},$$

где γ' и γ'' — плотности расплава при температурах T' и T'' соответственно.

Плотности атомов находятся обычным образом:

$$\{\rho_0\}_{\rm KJI} = \frac{\{\gamma\}_{\rm KJI}}{A} N_{\rm A}, \quad \{\rho_0\}_{\rm pa3} = \frac{\{\gamma\}_{\rm pa3}}{A} N_{\rm A},$$

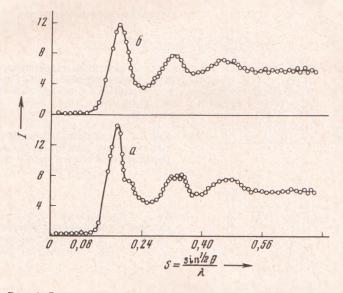
где A — грамм-атомный вес данного металла; $N_{\scriptscriptstyle A}$ — число Авогадро.

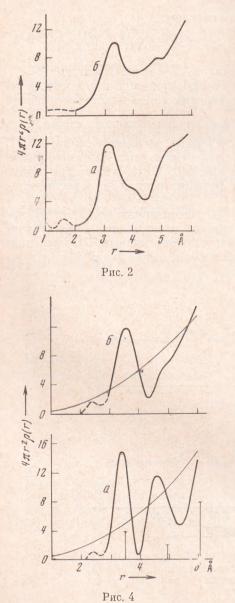
В принципе метод двух изотерм может быть применен и для многоком-понентных расплавов, состоящих из нескольких типов кластеров и общей

разупорядоченной зоны.

Для иллюстрации метода были привлечены экспериментальные данные по рассеянию медленных нейтронов ($\lambda=1.09\,\mathrm{\AA}$) расплавом свинца (5 , 6), любезно предоставленные авторами. В качестве исходных выбраны кривые (рис. 1, a, δ) интенсивности рассеяния при 330° ($\Psi_{\mathrm{pas}}=0.69$ (4)) и 550° ($\Psi_{\mathrm{pas}}=0.91$ (4)). Соответствующие им функции радиального распределения представлены на рис. 2, a, δ .

Парциальные кривые $I_{\kappa\pi}$ и $4\pi r^2 \{\rho(r)\}_{\kappa\pi}$, рассчитанные по (2) и (4), показаны на рис. 3, a и 4, a. Видно, что применение метода позволило значительно повысить разрешение максимумов на обеих кривых. Первый пик главного максимума кривой $I_{\kappa\pi}$ разделен на два, а на кривой $4\pi r^2 \{\rho(r)\}_{\kappa\pi}$




Рис. 1. Экспериментальные кривые угловых зависимостей интенсивности рассеяния медленных ($\lambda=1,09$ Å) нейтропов для Pb_{κ} при температурах 330° (a) и 550° (б) по данным (5, 6)

появился четко выраженный второй максимум. Имеется также ряд побочных и дополнительных максимумов, отсутствующих на исходных кривых. Координационные числа, определенные из кривой радиального распределения, равны $n_1 = 8.3$ и $n_2 = 10.2$.

Сравнение положений линий Pb_{TB} (показанных на рис. 3, a вертикальными стрелками) с положением рефлексов на кривой I_{KR} для Pb_{KR} показывает, что последние смещены различным образом. Подобное смещение ука-

зывает, по-видимому, на некоторую тетрагональность упаковки атомов в кластере. Последовательность $(\sin^2\frac{1}{2}\theta)/\lambda^2$ соответствует структуре г.ц.к-решетки, но несколько отличается от нее. Расчет показывает, что рефлексы кривой $I_{\kappa\pi}$ хорошо отвечают линиям г.ц.-тетрагональной решетки с параметрами: a=4.65 Å и c/a=1.06.

Полученные значения координационных чисел ($n_1 \simeq 8$ и $n_2 \simeq 10$) могут быть объяснены объединением четырех атомов первой координацион-

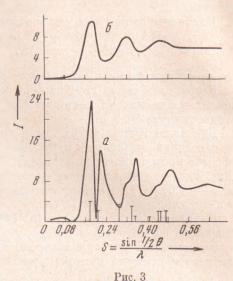


Рис. 2. Функции радиального распределения атомов в $Pb_{\rm 2}$ при 330° (а) и 550° (б) по данным (5,6)

Рис. 3. Парциальные кривые интенсивности для кластеров (a) и разупорядоченной зоны (б) при температуре 440°

Рис. 4. Парциальные функции радиального распределения атомов в кластерах (а) и разупорядоченной зоне (б) для температуры 440°

ной сферы с шестью атомами второй вследствие тетрагональности решетки кластеров свинца. По-видимому, такая тетрагональность связана с несферичностью частиц, обусловленной анизотропией электронной плотности и анизотропией термических колебаний атомов в кластере. Предполагается, что отмеченное является следствием неравномерного распределения свободных электронов расплава между кластерами и разупорядоченной зоной.

Однако, возможно, такое низкое значение n_1 (для г.ц.-структуры) объясняется недостатками метода Фурье-анализа (7), в частности несоблюде-

нием теоретической посылки $S_{\max} \to \infty$. Обрыв значений S при 0,7 $^{A^{-1}}$, когда на кривой $I_{\kappa\pi}$ еще имеются рефлексы, может привести к существенной неточности в определении функции радиального распределения методом

Фурье.

Хорошее разрешение кривой $I_{\kappa\pi}$ (см. рис. 2, a) позволяет оценить размеры и число частиц в кластерах свинца. Расчет дает 46 Å и 1700 атомов соответственно. Такие значения размеров кластеров и числа частиц в них могут служить подтверждением того, что кластеры являются устойчивыми образованиями, продолжительность жизни которых достаточно велика.

На рис. 3, 6 и 4, б показаны парциальные кривые интенсивности и функции радиального распределения для разупорядоченной зоны, рассчитанные по (3) и (5). Для них характерно малое число и большая размытость рефлексов по сравнению с таковыми для кластеров. Координацион-

ное число, определяемое площадью под кривой рис. 3, б, равно 10.

Анализ кривых $I_{\rm pa3}$ и $4\pi r^2 \{ \rho(r) \}_{\rm pa3}$ показывает, что разупорядоченная зона представляет малоупорядоченную область атомов, но достаточно плотную. Наличие хотя и размытых, но четко выделяемых рефлексов указывает, по-видимому, на существование некоторого ближнего порядка в ней, связанного с плотностным эффектом. Можно предполагать, что рассеяние и наблюдаемые рефлексы связаны в значительной степени с внутримолекулярной дифракцией на квазимолекулярных образованиях в разупорядоченной зоне. Отмеченное подтверждает предположение (4) о квазигазовой природе разупорядоченной зоны.

Следует отметить, что предлагаемый в настоящей работе метод определения парциальных дифракционных эффектов структурных составляющих может быть также распространен на окисные, солевые и другие расплавы.

Донецкий физико-технический институт Академии наук УССР Поступило 12 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Архаров, И. А. Новохатский, ДАН, 185, № 5, 1069 (1969). ² И. А. Новохатский, В. И. Архаров, ДАН, 201, № 4, 905 (1971). ³ И. А. Новохатский, В. И. Архаров, Физ. мет. и метапловед, 31, № 6, 1263 (1971). ⁴ В. И. Ладьянов, В. И. Архаров и др., там же, 34, № 5, 1060 (1972). ⁵ Б. И. Хрущев, А. М. Богомолов, Л. С. Шарипова, там же, 22, № 2, 279 (1966). ⁶ Б. И. Хрущев, А. М. Богомолов, Ш. Х. Игамбердиев, Изв. АН СССР, Металлы, № 1, 239 (1970). ⁷ J. A. Prins, H. P. Petersen, Physica, 3, 147 (1936).