УДК 576.355: 546.212.02

ЦИТОЛОГИЯ

В. В. СИЛЬЧЕНКО

О ДЕЙСТВИИ ТЯЖЕЛОВОДОРОДНОЙ ВОДЫ (D₂O) НА МЕРИСТЕМЫ КОРНЕЙ SECALE CEREALE L.

(Представлено академиком Н. В. Цициным 6 III 1972)

Установлено угнетающее действие тяжеловодородной воды на рост и развитие растительных и животных организмов (1). Причины этого в настоящее время недостаточно изучены. Тяжелая вода применяется как индикатор для изучения обмена воды в органах растений, поэтому важно знать особенности действия ее в процессах метаболизма и жизнедеятель-

Немногочисленными исследованиями, проведенными на растительных объектах, установлено, что тяжелая вода влияет наиболее активно на делящиеся клетки. Впервые Верзуном и Хюбнером (2) было установлено, что тяжелая вода в концентрации 99,8 ат. % D тормозит деление клеток корней проростков Vicia faba L. после трехчасового воздействия и изменяет соотношение фаз деления. Уже через 1 час резко увеличивалось количество метафаз и уменьшалось количество профаз и анафаз. Стейн и Форестер (3, 4), обрабатывая корни проростков кукурузы и гороха 80 и 90 % D₂O в течение 8 — 12 час., установили полную остановку деления клеток. При концентрации тяжелой воды от 80% и меньше наблюдалось восстановление митозов. Торможению деления клеток соответствовало увеличение количества профаз и уменьшение количества метафаз, анафаз и телофаз по сравнению с контролем.

В проведенных нами исследованиях семена озимой ржи (50 шт. в двукратной повторности) проращивали в чашках Петри (диаметр 80 мм) с внесением 2 мл тяжелой воды разной концентрации. Для исключения изотопного обмена дейтерия на протий воды воздуха сверху чашки Петри покрывали крышками чашек большего днаметра (100 мм) и щель между краями крышек и металлическим листом заливали парафином с воском. Вода заменялась через сутки. После 3 суток проращивания семян в тяжелой воде фиксировали в смеси Навашина по 10 первичных корешков в каждом варианте. Изучение деления клеток проводили на постоянных препаратах при толщине срезов 10 µ, окращенных гематоксилином по Гейденгайну. Митотическую активность, размеры ядер и ядрышек определяли в области середины зоны деления корешков. Средние данные по вариантам получены на основании 100 измерений при помощи угломерного окулярного микрометра АМ-9-4 К 15Х.

Тяжеловодородная вода угнетает деление клеток пропорционально концентрации дейтерия. Рожь является устойчивой культурой к действию тяжелой воды. Достоверное торможение митозов наблюдалось при концентрации D_2O 25 вес. % и больше. При действии тяжелой воды концентрации 99,8 ат. % D деление клеток сильно угнеталось и митотическая активность равнялась $5{,}11\pm0{,}54\,\%$ по сравнению с контролем $16,84 \pm 0,79\%$ (табл. 1).

Исходя из немногочисленных литературных данных, в настоящее время окончательно не известно, на каких фазах тяжелая вода тормозит деление клеток (², ³). Предполагают, что имеются два блока, один из

Влияние тяжеловодородной воды на активность деления клеток меристем корней Secale cereale L.

Варианты опыта. Вода, %	Количество клеток		Митотическая активность клеток, %		
	всего	делящихся	$M\pm m$	t	
Контроль * H ₂ O 100 D ₂ O 5 D ₂ O 10 D ₂ O 25 D ₂ O 50 D ₂ O 75 D ₂ O 99,8 ат. % D	11741 11673 11898 11358 16797 12560 12948 12941	2341 1956 1834 1632 2299 1558 1434 659	$\begin{array}{c} 19,84\pm0,50\\ 16,84\pm0,79\\ 15,45\pm0,45\\ 14,38\pm0,56\\ 13,75\pm0,70\\ 12,34\pm0,86\\ 11,11\pm0,58\\ 5,11\pm0,54\\ \end{array}$	3,2 1,5 2,5 2,9 3,9 5,8 12,2	

^{*} Края крышек чашек Петри не заливались парафином.

которых тормозит вступление клеток в профазу, другой действует в конце метафазы (4). Также допускают, что в начале действия тяжелой воды на меристемы корней увеличено время вступления клеток в митоз, а также увеличена продолжительность митоза по сравнению с контролем (3). Для окончательного решения этого вопроса необходимы специальные исследования с применением Н³-тимидина. По нашим данным, тяжелая вода при действии в течение 3 суток на прорастающие семена ржи, очевидно, тормозит в первых митозах переход профаз в метафазы, что вызывает увеличение процента клеток в профазе и уменьшение его в метафазе, анафазе, и телофазе:

При действии тяжеловодородной воды в концентрации 75 и 100% обнаружено несколько повышенное по сравнению с контролем количество хромосомных аберраций (дицентрических мостов).

Торможение деления клеток сопровождалось увеличением размеров ядер и ядрышек (табл. 2). Размеры ядер были достоверно увеличены при концентрации D₂O 50%, а ядрышек при 25% и больше. Судя по окраске ядер на препаратах, тяжелая вода вызывала торможение синтеза ДНК, а синтез РНК тормозился, очевидно, в меньшей степени.

Тяжелая вода вызывала нарушение структуры цитоплазмы и ядра, появление сильно вакуолизированных клеток в дерматогене и периблеме.

Таблица 2 Изменения размеров ядер и ядрышек при действии тяжелой воды на меристемы корней Secale cereale L.

Варианты опыта.	Диаметр	ндер, µ	Диаметр ядрышек, и	
Вода, %	$M\pm m$	t	$M\pm m$	t
Контроль H ₂ O 100 D ₂ O 5 D ₂ O 10 D ₂ O 25 D ₂ O 50 D ₂ O 75 D ₂ O 99.8 ат. % D	$\begin{array}{c} 12,90\pm0,14\\ 12,01\pm0,19\\ 11,96\pm0,15\\ 12,57\pm0,18\\ 12,63\pm0,24\\ 13,34\pm0,25\\ 13,61\pm0,16\\ 13,84\pm0,41\\ \end{array}$	3,8 0,2 2,2 2,0 4,3 6,4 4,0	$6,18\pm0,14$ $5,53\pm0,06$ $5,59\pm0,07$ $5,58\pm0,08$ $6,11\pm0,15$ $6,40\pm0,07$ $6,46\pm0,17$ $6,22\pm0,22$	4,3 0,7 0,5 3,6 4,7 5,1 3,0

Из полученных данных следует, что тяжелая вода в концентрации более

10% является токсичной для ржи.

Недостаточная аэрация прорастающих семян, вызванная парафинированием краев наружных чашек Петри для исключения изотопного обмена дейтерия, обусловила достоверное по сравнению с незапарафинированным вариантом (контроль) торможение деления клеток и уменьшение размеров ядер и ядрышек (табл. 2).

Механизм ингибирующего действия тяжеловодородной воды на деление клеток в настоящее время недостаточно ясеп. Некоторые исследователи объясняют это действие стабилизацией структуры митотического аппарата (5). Другой возможной причиной торможения деления клеток тяжелой водой является ингибирование синтеза ДНК (6). Синтез белков в

тяжелой воде не ингибируется (7).

Торможение деления клеток приводит к увеличению их размеров, а также размеров ядер. Причина такого увеличения недостаточно ясна. Увеличение размеров ядер и ядрышек под влиянием тяжелой воды, очевидно, следует рассматривать как результат дезинтеграции процессов метаболизма в клетке и временного аномального усиления синтетических процессов.

Институт физиологии растений Академии наук УССР Биев

Поступило 6 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. И. Денько, Усп. совр. биол., 70, в. 1, 41 (1970). ² G. Wersuhn, G. Hübner, Flora, 154, H. 2, 393 (1964). ³ O. L. Stein, G. M. Forrester, J. Exp. Bot., 15, № 43, 146 (1964). ⁴ O. L. Stein, G. M. Forrester, Planta, 60, H. 4, 349 (1963). ⁵ D. Marsland, A. Zimmerman, Exp. Cell Res., 30, 23 (1965). ⁶ A. K. Bal, P. R. Gross, J. Cell Biol., 23, 188 (1964). ⁷ J. Holland, F. Antoni, Biochim. et biophys. acta, 157, 663 (1968).