Анализ показал, что в Жлобинском районе в 2023 г. доля изъятия подземных вод составляет почти 7 %, доля изъятия поверхностных вод — более 5 % от общеобластных объемов. Для района характерно отсутствие сброса недостаточно очищенных сточных вод и сточных вод без предварительной очистки в поверхностные водные объекты, нитрат-иона, нитрит-иона и фосфат-иона. В составе сбрасываемых сточных вод района в разрезе области преобладают хлорид-ион, азот общий, аммоний-ион.

Литература

1 Регионы Республики Беларусь. Основные социально-экономические показатели областей, городов и районов : стат. сборник / Нац. стат. комитет РБ ; редкол.: И. В. Медведева (предс.) [и др.] : в 2 т. – Т. 2. – Минск : [б. и.], 2024. – 588 с.

2 Государственный водный кадастр. Информационная система. Раздел «Статотчетность водопользователей». — URL: http://195.50.7.216:8081/watstat/data/ (дата обращения: 22.03.2025).

УДК 551.3:553.98(476.2)

В. А. Осипенко

АНАЛИЗ ОСЛОЖНЕНИЙ ГЕОЛОГИЧЕСКОГО ХАРАКТЕРА ПРИ БУРЕНИИ СКВАЖИН НА ТЕРРИТОРИИ ПРИПЯТСКОГО ПРОГИБА (НА ПРИМЕРЕ ОСТАШКОВИЧСКОГО МЕСТОРОЖДЕНИЯ)

В данной работе рассматриваются осложнения, возникающие в процессе бурения нефтегазовых скважин, которые представляют собой технологические происшествия, нарушающие непрерывность бурового процесса. Осложнения могут быть вызваны как горно-геологическими, так и технологическими факторами и приводят к дополнительным затратам времени, материалов и средств, а также влияют на надежность эксплуатации скважин.

Осложнение — это технологическое происшествие, характеризующее нарушение непрерывности технологического процесса бурения, вызванное явлениями горно-геологического или технологического характера [2]. Осложнения вызывают дополнительные затраты времени, материалов и средств на строительство скважины и оказывает существенное влияние на ее надежность при последующей эксплуатации. Все виды осложнений при бурении нефтегазовых скважин подразделяются на два основных вида — это геологические и технологические [1]. К геологическим относятся следующие виды осложнений: поглощение бурового или тампонажного растворов; газонефтеводопроявления; осыпи. К технологическим — сальникообразование; желобообразование; самопроизвольное изменение траектории ствола скважины.

Анализ геологических осложнений при бурении скважин на Осташковичском месторождении сведен в сводные таблицы (таблицы 1–5) и диаграммы (рисунки 1–4).

Таблица 1 — Сводная таблица геологических осложнений при бурении скважин в надсолевых отложениях (составлено автором)

			$N_{\underline{0}}$	сква	ажи	ны	Количество осложнений			
Вид осложнений	237	249	270	239	257	276	261	266	единиц	%
Поглощение бурового раствора	1	1	1	1	_	1	1	1	8	80
Газонефтеводопроявления	_	_		_	1		1	_	_	_
Осыпи	_	-	_	1	1	_	_	_	2	20
Всего	1	1	1	2	1	1	1	1	10	100

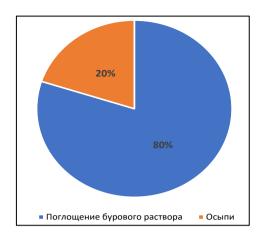


Рисунок 1 — Распределение количества случаев осложнений геологического характера в надсолевых отложениях, %

За период разработки месторождения при бурении в надсолевых отложениях было зафиксировано 10 осложнений геологического характера.

Из 10-ти случаев осложнений геологического характера в надсолевых отложениях -80% случаев это поглощение бурового раствора, 20% – осыпи.

Таблица 2 — Сводная таблица геологических осложнений при бурении скважин в верхнесоленосных отложениях (составлено автором)

			№ сн	кваж	синь	I	Количество осложнений		
Вид осложнений	249	264	261	235	287	301	847 единиц		%
Поглощение бурового раствора	_	_	_	1	_	_	_	1	12,5
Газонефтеводопроявления	_	_	_	_	_	1	1	2	25
Осыпи	1	1	1	1	1	_	_	5	62,5
Всего	1	1	1	2	1	1	1	8	100

При бурении в верхнесоленосных отложениях зафиксировано 8 осложнений геологического характера.

Из восьми случаев осложнений геологического характера в верхнесоленосных отложениях -62.5 % случаев осыпи, 25 % - газонефтеводопроявления, 12.5 % - поглощение бурового раствора (рисунок 2).

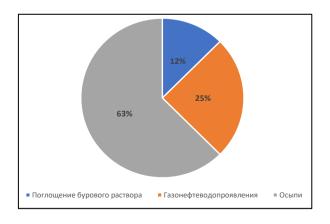


Рисунок 2 — Распределение количества случаев осложнений геологического характера в верхнесоленосных отложениях, %

Таблица 3 — Сводная таблица геологических осложнений при бурении скважин в нижнесоленосных отложениях (составлено автором)

	№ скв	ажины	Всего	%-ое значение	
Вид осложнений	30	209	осложнений	от общего количества	
		209	по видам	осложнений	
Поглощение бурового раствора	1	_	1	50	
Газонефтеводопроявления	_	1	1	50	
Осыпи	_		_	_	
Всего	1	1	2	100	

При бурении в нижнесоленосных отложениях зафиксировано два осложнения геологического характера. Из 2-х осложнений геологического характера в межсолевых отложениях $-50\,\%$ случаев это поглощение бурового раствора, $50\,\%$ – газонефтеводопроявления (рисунок 3).

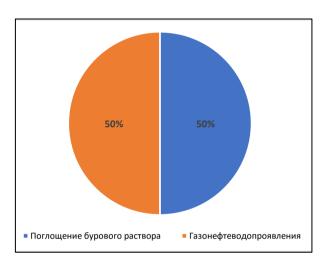


Рисунок 3 — Распределение количества случаев осложнений геологического характера в нижнесоленосных отложениях, %

Таблица 4 – Сводная таблица геологических осложнений при бурении скважин в подсолевых карбонатных отложениях (составлено автором)

		№ скв	ажинь	I	Всего	%-ое значение
Вид осложнений		211	275	294	осложне-	от общего
	222				ний	количества
					по видам	осложнений
Поглощение бурового раствора	1	_	1	1	3	75
Газонефтеводопроявления	_	1	_	_	1	25
Осыпи	_	_	_	_	_	_
Всего	1	1	1	1	4	100

При бурении в подсолевых карбонатных отложениях зафиксировано четыре осложнения геологического характера.

Из четырех осложнений геологического характера в подсолевых карбонатных отложениях 75 % случаев – это поглощение бурового раствора, 25 % – газонефтеводопроявления (рисунок 4).

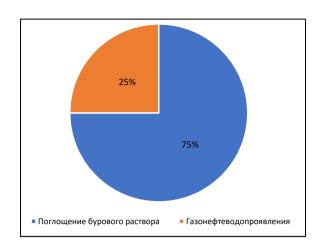


Рисунок 4 — Распределение количества случаев осложнений геологического характера в подсолевых карбонатных отложениях, %

В целом при бурении скважин на Осташковичском месторождении зафиксировано 39 осложнений геологического характера. Из 39-ти осложнений геологического характера 61 % случаев – это поглощение бурового раствора, 21 % – газонефтеводопроявления, 18 % – осыпи.

Таблица 5 — Сводная таблица геологических осложнений при бурении скважин на Осташковичском месторождении (по толщам)

			Тол	Ä			
Вид осложнений	Надсолевая	Верхнесоленосная	Межсолевая	Нижнесоленосная	Подсолевая карбонатная	Всего осложнений по видам	%-ое значение от общего количества осложнений
Поглощение бурового раствора	8	1	11	1	3	24	61,5
Газонефтеводопроявления	_	2	4	1	1	8	20,5
Осыпи	2	5	_	_	_	7	18,0
Всего	10	8	15	2	4	39	100

Исходя из вышеизложенного, можно сделать следующие выводы:

- 1 Преобладающее число осложнений в скважинах, приходится на межсолевую толщу 38~%.
 - 2 Основным видом осложнений является поглощение бурового раствора 61 %.
- 3 Наибольшее количество осложнений в виде поглощений бурового раствора приходится на межсолевую толщу.
- 4 Наибольшее количество осложнений в виде газонефтеводопроявления приходится на межсолевую толщу.
- 5 Наибольшее количество осложнений в виде осыпей приходится на верхнесоленосную толщу.

Анализ геологических осложнений, зафиксированных при бурении на Осташковичском месторождении, представлен в сводных таблицах и диаграммах. В ходе разработки месторождения было зарегистрировано 39 геологических осложнений, из которых 10 произошло в надсолевых отложениях, 8 – в верхнесоленосных, 15 – в межсолевых, 2 – в нижнесоленосных и 4 – в подсолевых карбонатных отложениях.

Результаты анализа подчеркивают необходимость учета геологических факторов при проектировании и проведении буровых работ для минимизации рисков и повышения эффективности бурения.

Литература

- 1 Осложнения при бурении нефтегазовых скважин : учебное пособие / В. Г. Заливин. Иркутск : Изд-во ИрГТУ, 2013.-247 с.
 - 2 Фондовые материалы РУП «ПО "Белоруснефть"» по видам осложнений.

УДК 622.276.66

А. В. Пикас

ИСТОРИЯ РАЗВИТИЯ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА

Статья посвящена истории развития гидравлического разрыва пласта (ГРП). Рассмотрена история появления этого метода, основные технологические изменения, происходившие в течение XX и XXI веков, актуальность этого метода на современном этапе. История развития рассмотрена на примере США, так как именно там ГРП наиболее активно и полноценно развивался.

Гидравлический разрыв пласта (ГРП) зародился в конце 1940-х годов в США. Первая успешная операция по ГРП была проведена в 1947 году компанией *Halliburton* на месторождении *Hugoton* в Канзасе. Таким образом, 1947 можно считать годом рождения ГРП.

Примерно в это же время начинает зарождаться теоретическая основа проведения ГРП. В 1949 году Дж. Б. Кларк опубликовал важную статью о применении ГРП для повышения продуктивности пласта, а в 1957 году М. Хуберт и Д. Уиллис опубликовали работу, теоретически обосновывающую механику образования трещин в продуктивных отложениях [1]. Важно отметить и вклад советских ученых С. А. Христиановича, Ю. П. Желтова, Г. И. Баренблатта и др. в развитие теории ГРП. В течение 1950-х—1960-х разработка теоретических основ ГРП осуществлялась параллельно как в США, так и в СССР, однако объемы применения ГРП в США были значительно выше.

Первые операции ГРП вплоть до 1952 года производились с использованием жидкостей разрыва на углеводородной основе, которые состояли из сырой нефти или загущенного бензина (напалм). В качестве проппанта использовался обыкновенный кварцевый песок.

С 1953 года в качестве жидкости разрыва впервые начинает применяться вода, и постепенно происходит увеличение доли ГРП с жидкостями на ее основе. В 99 % случаев проппантом выступал песок, однако в незначительном количестве начали использоваться и другие материалы (керамика, полимеры, боксит). Через некоторое время появились гелеобразующие агенты, представленные гуаровой камедью и производными целлюлозы. Сшивателями выступали борат, при высоких значениях pH и пироантимонат – при низких. В 1960-х происходит внедрение KCl для снижения поверхностного натяжения, а также для стабилизации глин [2].

Положительный эффект от применения ГРП на малодебитных месторождениях США обусловил его широкое внедрение в нефтедобыче. Уже к концу 1955 года количество проведенных операций на месторождениях в США составило сто тысяч. Успешность операций достигла 90 процентов [1]. За период 1951—1963 была проведена 391 тысяча ГРП [3]. Первый пик применения ГРП в США пришелся на 1955 год, когда количество операций достигло 4500 в месяц, однако к 1972 году оно снизилось до 1000. К 1968 году в мире было произведено более миллиона операций ГРП [1].

До конца 1960-х применение ГРП ограничивалось малоглубинными пластами с целью борьбы с кольматацией призабойной зоны пласта (ПЗП). Объемы обработки были