УДК 513.83

MATEMATUKA

г. п. амирджанов

Q-ПРОСТРАНСТВА И КАРДИНАЛЬНЫЕ ЧИСЛА

(Представлено академиком П. С. Александровым 24 Х 1972)

В работе под наследственно Q-пространствами понимаются такие пространства, каждое подмножество которых есть Q-пространство. Через c(X) мы будем обозначать число Суслина топологического пространства X. Полагаем $cc(X) = \{c(A) \colon A \subseteq X\}$. Под l(X) мы будем понимать верхнюю грань длин свободных последовательностей топологического пространства X. В работе всегда пространства регулярны, s(X) есть плотность, а w(X) — вес пространства X.

Б. Э. Шапировский заметил, что из доказательства леммы 2 работы

(3) можно получить следующее утверждение.

Лемма 1. Пусть X — бикомпакт, $x \in U \subset X$, U открыто в X. Тогда или $l(X) > \aleph_0$, или существует бикомпакт $B \subset U$, $x \in U$, для которого $\chi(B,X) \leqslant \aleph_0$ и $w(B) \leqslant \mathfrak{c}$.

Лемма 2. Пусть X — бикомпакт, являющийся наследственно Q-про-

странством, $u s(X) \leq \mathfrak{c}$. Тогда $|X| \leq \mathfrak{c}$.

Доказательство. Возьмем $A \subset X$, для которого [A] = X и |A| = s(X). Подобно тому, как это сделано в (9), построим по трансфинитной индукции мпожества A_{α} такие, что:

 1°) $A \subset A_1$;

 2°) для каждого $S \subset A_{\lambda}$, $\lambda < \omega_{i}$, $|S| \leq \aleph_{0}$, существует x_{s} — предельная точка, $x_{s} \in A_{\alpha}$ для каждого $\alpha > \lambda$;

 3°) $|A_{\alpha}| \leq \mathfrak{c}, A_{\alpha} \subset A_{\beta}$ при $\beta > \alpha$.

Действительно, пусть мы построили A_{α} для $\alpha < \lambda < \omega_1$. Положим $\overline{A}_{\lambda} = \bigcup \{A_{\alpha}: \alpha < \lambda\}$, тогда $|A_{\lambda}| \le \mathfrak{c}$. Возьмем для каждого $S \subset A_{\lambda}$, $|S| \le \aleph_0$ предельную точку x_s для S в X и положим $A_{\lambda} = \overline{A}_{\lambda} \cup (\cup \{x_s: S \subset \overline{A}_{\lambda}, |S| \le \aleph_0)$. Легко видеть, что построенные таким образом A_{α} удовлетво-

ряют условиям 1°) — 3°).

Положим $A = \cup \{A_{\alpha}: \alpha < \omega_{1}\}$. Тогда $A \subset \mathcal{A}$, A — счетно-компактно. Действительно, если $S \subset \mathcal{A}$, $|S| \leq \aleph_{0}$. Существует такое $\alpha < \omega_{1}$, что $S \subset A_{\alpha}$ и, следовательно, существует x_{S} — предельная точка для S в X. $x_{S} \in A_{\alpha+1} \subset \mathcal{A}$. Легко видеть, что $|\mathcal{A}| \leq \mathfrak{c}$. Но, поскольку X есть наследственно Q-пространство, а \mathcal{A} есть счетно-компактное пространство, получаем, что \mathcal{A} есть бикомпакт. Так как $[\mathcal{A}] = X$, получаем неравсиство $|X| \leq \mathfrak{c}$.

Пемма 3. Пусть X— наследственно Q-пространство, являющееся би-

компактом. Тогда $l(X) \leq \aleph_0$.

Доказательство. Действительно, пусть $l(X) > \aleph_0$; тогда существует свободная последовательность $T = \{x_\alpha : \alpha < \omega_1\}$ в X. Поскольку X - бикомпакт, то существует $x_0 -$ точка полного накопления для T в X. Возможны два случая:

1°) существует такое $\alpha < \omega_1$, что $x_0 \in [\cup \{x_\lambda: \lambda \leq \alpha\}]$, но тогда $x_0 \in X \setminus [\cup \{x_\lambda: \lambda > \alpha\}] = V$ открыто в X; $|V \cap T| \leq \aleph_0$. Получили противо-

речие.

 2°) $x_{\circ} \notin [T]_{\kappa_{\circ}}$. Но поскольку $x_{\circ} \in [T]$, $[T]_{\kappa_{\circ}}$ счетно-компактно, а X наследственно Q-пространство, то $[T]_{\kappa_{\circ}}$ – бикомпакт. Получили противоречие с включением $x_{\circ} \in [T] \setminus [T]_{\kappa_{\circ}}$. Лемма доказана.

Теорема 1. Пусть X- бикомпакт, являющийся наследственно-

Q-пространством $u c(X) \leq \aleph_0$. Тогда $|X| \leq c$.

Доказательство. По лемме 3, $l(X) \leqslant \aleph_0$. Но тогда, пользуясь леммой 1, получаем, что для каждой точки $x \in X$ существует бикомнакт F_x , для которого $x \in F_x$, $w(F_x) \leqslant \mathfrak{c}$ и $\chi(F_x, X) \leqslant \aleph_0$. В таком случае $s(F_x) \leqslant \aleph_0$, откуда по лемме 2 иолучаем перавенство $|F_x| \leqslant \mathfrak{c}$. Возьмем в X такое семейство γ , что $\gamma = \{F: F \subset X, F - \text{бикомпакт}, |F| \leqslant \mathfrak{c}, \chi(F, X) \leqslant \aleph_0\}$, $[\cup \{F: F \in \gamma\}] = X$ и для любых F, $\Phi \in \gamma$, $F \neq \Phi$ имеет место $F \cap \Phi = \Lambda$. Тогда по лемме 6 из $({}^3)$ получаем $|\gamma| \leqslant \mathfrak{c}$, откуда выводим неравенство $s(X) \leqslant \mathfrak{c}$. Применив лемму 2, получим $|X| \leqslant \mathfrak{c}$. Теорема доказана.

Из теоремы 1 следует теорема II. С. Александрова о мощности совер-

шенно пормального бикомпакта.

Примечание. Способом, аналогичным использованному в доказательстве леммы 2, легко показать, что паследственно Q-пространство, являющееся k-пространством, имеет счетную тесноту.

Приведем простой пример, показывающий, что даже в случае бикомпактов теорема 1 не есть следствие теоремы А. В. Архангельского о мощ-

ности бикомпактов с первой аксиомой счетности.

Пример 1. X — бикомпакт, являющийся наследственно Q-простран-

ством, $s(X) \leq \aleph_0$, но $\chi(X) > \aleph_0$.

Возьмем бикомпакт X_0 — «две стрелки». Известно, что X_0 — совершенпо нормальный бикомпакт, сепарабельный, но не метризуемый. В таком
случае диагональ Δ в $X_0 \times X_0 = X_0$ не есть G_{δ} -множество, но X_0 удовлетворяет нервой аксноме счетности и сепарабельно. Рассмотрим разбление
пространства X_0 на классы эквивалентности, для которого класс эквивалентности точки $x \not\in \Delta$ есть множество $\{x\}$, а, если $x \in \Delta$, то ее класс эквивавалентности есть множество Δ . Обозначим полученное фактор-пространство через X, а проектирование X_0 на фактор-пространство — через f, $f(\Delta) = p$. Тогда, очевидно, f есть совершенное отображение, $\chi(p, X) > \aleph_0$. X является сепарабельным пространством.

Покажем, что X есть наследственно Q-пространство. Пусть $A \subset X$. Тогда, если $p \not\in A$, то, легко видеть, что A гомеоморфно $f^{-1}(A) = B$. Но B является Q-пространством как подмножество бикомпакта \bar{X}_0 с первой аксиомой счетности и, следовательно, A есть Q-пространство. В случае $p \in A$ имеем, что A является Q-замкнутым множеством в бикомпакте X и потеореме из (6) подмножество A составляет Q-пространство. Таким обра-

зом, мы показали, что X есть паследственно Q-пространство.

Vaughan доказал (7), что если X— пространство точечно-счетного типа, то $\beta X \setminus X$ есть Q-пространство. В той же работе он построил пример в предположении С.Н. пространства X, которое не есть пространство точечно-счетного типа, но $\beta X \setminus X$ есть Q-пространство. Мы дадим два примера пространств не точечно-счетного типа, обладающих тем свойством, что $\beta X \setminus X$ есть Q-пространство, но для построения которых не нужно использовать С.Н. В дальнейшем нам понадобится следующая

Лемма 4. Пусть $p: \beta X \to Y - \phi$ акторное отображение на хаусдорфово пространство Y. Если $A \subset \beta X \setminus X$ и для каждой точки $x \in A$ $p^{-1}p(x) =$

=x, a B = p(A), $Z = Y \setminus B$, то $\beta Z = Y u B$ гомеоморфно A.

Доказательство. Пусть $f: Z \to [0, 1]$ —непрерывное отображение в отрезок; тогда покажем, что существует продолжение f до непрерывного отображения всего Y в отрезок. Положим $T = \beta X \setminus A$, тогда $p^{-1}(Z) = T$, $\beta T = \beta X$. Поскольку $f \circ p$ непрерывно отображает T в [0, 1], поэто-

му существует $g: \beta X \to [0,1]$, для которого $g|_T = f \circ p|_T$.

Определим отображение h следующим образом: h(x) = f(x) для $x \in \mathbb{Z}$ и $h(x) = g(p^{-1}(x))$ для $x \in B$. Легко видеть, что $h|_{\mathbb{Z}} = f$. Докажем непрерывность h. Для этого достаточно доказать непрерывность отображения $h \circ p$. Но $h \circ p = g$ — непрерывное отображение βX в [0,1]. Заметим теперь, что $A = p^{-1}(B)$ и p — совершенное отображение βX на Y, откуда получаем: $p|_A$ есть совершенное уплотнение A на B, т. е. гомеоморфизм.

Лемма доказана.

Пример 2. X- счетное T_2 -пространство, $\beta X \setminus X$ является Q-пространством, но X не есть пространство точечно-счетного типа.

Возьмем в $\beta N \setminus N$ семейство γ дизьюнктных открыто-замкнутых подмножеств $\beta N \setminus N$, для которого $|\gamma| = \mathfrak{c}$ и $[\cup \{U \colon U \in \gamma\}] = \beta N \setminus N$. Положим $F = (\beta N \setminus N) \setminus \cup \{U \colon U \in \gamma\}$. Легко видеть, что F – бикомпакт. Скленим теперь F в точку и полученное таким образом из βN фактор-пространство обозначим через Y, а отображение проектирования βN на Y – через p. Положим $A = (\beta N \setminus N) \setminus F$. Тогда легко видеть, что Y есть T_2 -пространство и выполнены все условия леммы 4. Следовательно, если $X = p(N) \cup \bigcup p(F)$, то $\beta X = Y$. Пусть p(F) = b. Покажем, что X не есть пространство точечно-счетного типа. Действительно, если Φ – бикомпакт, для которого $b \in \Phi \subset X$, $\chi(\Phi, X) \leqslant \aleph_0$, то, поскольку, p – совершенное отображение $N \cup F$ на X, получаем, что $H = p^{-1}(\Phi)$ есть бикомпакт, содержащий F и удовлетворяющий условию $\chi(H, N \cup F) \leqslant \aleph_0$, и в таком случае выполняется также перавенство $\chi(H, \beta N) \leqslant \aleph_0$. Тогда $F = H \cap (\beta N \setminus N)$ является G_b -мпожеством в $\beta N \setminus N$ и, следовательно, по теореме из $\binom{41}{2}$, $\text{Int } F \neq \Lambda$, $\text{T. e. } F \cap A \neq \Lambda$. Получили противоречие.

Таким образом X не есть пространство точечно-счетного типа.

Теорема 2. Пусть X— вполне регулярное пространство. Для того чтобы X было финально-компактно, необходимо и достаточно, чтобы для каждого бикомпакта $F \subseteq \beta X \setminus X$ существовал бикомпакт Φ , для которого выполняются следующие условия:

$$\chi(\Phi, \beta X) \leqslant \aleph_0, \quad F \subset \Phi \subset \beta X \setminus X.$$

Доказательство. Пусть пространство X финально-компактио, $F \subset \beta X \setminus X$. Для каждого $x \in X$ рассмотрим открытое в βX множество V_{∞} для которого $[V_x] \cap F = \Lambda$. Из финальной компактности пространства X следует существование $\{x_i: x_i \in X, i \in N\}$ такого, что $X \subset \bigcup \{V_{x_i}: i \in N\}$. Если $O_{x_i} = \beta X \setminus [V_{x_i}]$, то $F \subset \bigcap \{O_{x_i}: i \in N\} \subset \beta X \setminus X$ и, следовательно, существует $\Phi \subset \beta X \setminus X$, для которого $F \subset \Phi$ и $\chi(\Phi, \beta X) \leq \aleph_0$.

Докажем теперь достаточность. Аналогично тому, как это сделано в (10), можно показать, что если для каждого бикомпакта $F \subset \beta X \setminus X$ существует счетное локально-конечное открытое покрытие γ пространства X, для элементов которого $[U]_{\beta X} \cap F = \Lambda$, то пространство X финально-компактио. Пусть теперь F — бикомпакт, лежащий в $\beta X \setminus X$. Существует бикомпакт Φ , для которого $F \subset \Phi \subset \beta X \setminus X$ и $\chi(\Phi, \beta X) \leq \aleph_0$. В таком случае существует такое непрерывное отображение $f \in \beta X$ в отрезок $\{0,1\}$, для которого $\Phi = f^{-1}(O)$. Положим $O_1 = ({}^1/{}_2,1]$, $O_i = ({}^1/{}_2i, {}^3/{}_2i)$ для $i \geq 2$ и возьмем $U_i = f^{-1}(O_i) \cap X$ — открытое в X множество. Заметим теперь, что $X \subset f^{-1}(\{0,1\})$ и $\{O_i\colon i \in N\}$ есть локально-копечное покрытие получитервала $\{0,1\}$. В таком случае $\{U_i\colon i \in N\}$ есть локально-копечное счетное покрытие пространства X. Поскольку, $0 \neq [O_i]$ для $i \in N$, то $F \cap f^{-1}(\{O_i\}) = \Lambda$ и, следовательно, $F \cap [U_i]_{\beta X} = \Lambda$. Теорема доказана.

Пример 3. X- связное сепарабельное финально-компактное пространство, для которого $\beta X \setminus X$ есть Q-пространство, но X не есть про-

странство точечно-счетного типа.

Пусть T=[0,1), тогда T является связным докально-бикомпактным финально-компактным пространством. По теореме из (5) имеет место неравенство $c(\beta T \setminus T) \geqslant \mathfrak{c}$. Пусть γ —семейство попарно непересекающихся открытых множеств $\beta T \setminus T$ и $|\gamma| = \mathfrak{c}$. Так как T финально-компактно и, следовательно, является Q-пространством, существуют такие бикомпакты F_v для $U \in \gamma$, которые удовлетворяют условиям $F_v \subset U$, $\chi(F_v, \beta T)$. Положим $A = \bigcup \{F_v \colon U \subseteq \gamma\}$, $R = \beta T \setminus A$.

Поскольку A есть дискретная сумма с бикомпактов, A не финально-компактно, но является Q-пространством. По теореме из работы (8), R не есть пространство счетного типа. Пусть $B \subseteq R$, B — бикомпакт, который не содержится ни в каком бикомпакте счетного характера, лежащем в R. Приклеим в βT бикомпакт B в точку b и обозначим полученное фактор-пространство через Y. Пусть p есть проектирование βT на фактор-пространство Y. Если $X = Y \setminus p(A)$, то, по лемме A, $\beta X = Y$, p(A) гомеоморфпо A. Поскольку $A = \beta X \setminus X$, то, по построению A, для каждого бикомпакта $F \subseteq \beta X \setminus X$ существует бикомпакт Φ , удовлетворяющий условиям: $\chi(\Phi, \beta X) \leqslant \aleph_0$, $F \subseteq \Phi \subseteq \beta X \setminus X$, то, по теореме A, пространство A финально-компактно. Легко заметить, что A сепарабельно. Поскольку A связно, то A связно. Докажем, что A не является пространством точечносчетного типа. Пусть A — бикомпакт, удовлетворяющий условиям: A связно, A связно. Докажем, что A не является совершенным отображением A па A на A множество A по по A по по тиворечие A по A по по тиворечие A по по тиворечие A по A по по тиворечие A по по тивор

Верен, однако, следующий простой критерий.

Теорема 3. Пусть X—вполне регулярное пространство; тогда, для того чтобы X было пространством точечно-счетного типа, необходимо и достаточно выполнения следующего условия для каждого бикомпактного расширения bX: если $x \in X$, то существует Y—финально-компактное пространство, для которого $bX \setminus X \subset Y$, $x \notin Y$.

В заключение я хочу выразить искреннюю благодарность В. И. Поно-

мареву за руководство работой.

Московский государственный университет им. М. В. Ломоносова

Поступило 19 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. С. Александров, П. С. Урысон, Мемуар о компактных топологических пространствах, «Наука», 1971. ² А. В. Архангельский, В. И. Пономарев, ДАН, 182, № 5 (1968). ³ А. В. Архангельский, ДАН, 192, № 2 (1970). ⁴ А. В. Архангельский, ДАН, 187, № 5 (1969). ⁵ W. W. Comfort, G. Hugg, Trans. Am. Math. Soc., 111, № 3 (1964). ⁶ S. Mrówka, Bull. Acad. Polon. sci., Cl. 3, 5, № 10, 80 (1957). ⁷ Vanghan, Trans. Am. Math. Soc., 151, № 1 (1970). ⁸ M. Henriksen, J. R. Isbell, Duke Math. J., 25, № 1 (1958). ⁹ R. Engelking, Outline of General Topology, North — Holand, Amsterdam, 1968. ¹⁰ H. Tamano, Pacific J. Math., 10 (1960). ¹¹ W. Rudin, Duke Math. J., 23, № 2 (1956).