г. и. эскин

АСИМПТОТИКА РЕШЕНИЙ ЭЛЛИПТИЧЕСКИХ ПСЕВДОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С МАЛЫМ ПАРАМЕТРОМ

(Представлено академиком С. Л. Соболевым 2 XII 1972)

1. Изучение некоторых смешанных задач теории упругости сводится к решению эллиптических псевдодифференциальных уравнений (п.д.у.) с малым параметром (см. (¹,²)). В настоящей работе находится асимптотика решений для широкого класса таких уравнений. Отметим, что построение асимптотики в эллиптическом случае имеет много общего с построением параметрикса для эллиптических краевых задач (см. (³)). Мы будем в дальнейшем пользоваться некоторыми обозначениями и определениями работы (³).

Ранее п.д.у., зависящие от параметра, изучались в работах А. С. Демидова (4) и Л. Д. Покровского (5) для некоторого подкласса эллиптических п.д.у. с символами, удовлетворяющими условию гладкости в области

(CM. (6)).

2. Определим класс символов со следующими свойствами:

а) Пусть $A_{\scriptscriptstyle 0}(x,\,\xi)$ — эллиптический символ класса \hat{O}_{m_1} (см. (³)) такой, что при любом N и $r\geqslant 1$

$$A_0(x,\xi) = \sum_{k=0}^{N} a_k(x,\omega) r^{m_1-k} + a_{N+1}(x,\omega,r),$$
 (1)

где $\omega = \xi / |\xi|$, $r = |\xi|$, причем $a_h(x, \omega) \in C^{\infty}$, $a_0(x, \omega) \neq 0$ при $x \in \mathbb{R}^n$, $|\omega| = 1$, $a_{N+4} \in \hat{O}_{m,N-4}$ при $r \geq 1$.

 $|\omega|=1, a_{N+1}\in \hat{O}_{m,-N-1}$ при $r\geqslant 1.$ б) Пусть $A_1(x, \omega, t)\in C^\infty$ при $x\in \mathbf{R}^n, |\omega|=1, t\geqslant 0$, причем для лю-

бого N и $t \ge 1$

$$A_1(x, \omega, t) = \sum_{k=0}^{N} b_k(x, \omega) t^{m_2-k} + B_{N+1}(x, \omega, t),$$
 (2)

где $b_k(x, \omega) \in C^{\infty}$, $b_0(x, \omega) \neq 0$ при $x \in \mathbb{R}^n$, $|\omega| = 1$, $B_{N+1}(x, \omega, t) \in \hat{O}_{m_2-N-1}$ при $t \geq 1$,

Кроме того, предполагается, что $A_1(x, \omega, t) \neq 0$ при $t \geq 0$ и

 $A_1(x, \omega, 0) \equiv 1.$

Обозначим через $A_{\varepsilon}(x,\xi)$ следующий символ:

$$A_{\varepsilon}(x,\,\xi) = (A_{\varepsilon}(x,\,\xi) + \varepsilon A_{\varepsilon}(x,\,\omega,\,r,\,\varepsilon r,\,\varepsilon))A_{\varepsilon}(x,\,\omega,\,\varepsilon r),\tag{3}$$

где $A_0(x, \xi)$ и $A_1(x, \omega, \varepsilon r)$ те же, что в (1) и (2), а $A_2(x, \omega, r, t, \varepsilon) \in C^{\infty}$ при $x \in \mathbf{R}^n$, $|\omega| = 1$, $r \geqslant 0$, $t \geqslant 0$ и $A_2 \in \hat{\mathcal{O}}_{m_1}$ при $r \geqslant 1$ и $0 \leqslant \varepsilon \leqslant \varepsilon_0$ равномерно по ε .

3. Рассмотрим в области G с гладкой границей Γ п.д.у.

$$pA_{\varepsilon}(x, D)u_{\varepsilon} = f, \tag{4}$$

где $A_s(x, D)$ — псевдодифференциальный оператор (п.д.о.) с символом (3), p — оператор сужения функции на область G. Пусть $H_s(G)$ — пространство

Соболева — Слободецкого в G, а $\mathring{H}_s(G)$ — пространство функций, принадлежащих $H_s(\mathbf{R}^n)$ с носителем в \overline{G} . Обозначим через $H_{s,r}(\mathbf{R}^n)$ пространство обобщенных функций в \mathbf{R}^n со следующей конечной нормой:

$$||u||_{s,r}^2 = \int (1+|\xi|)^{2s} (1+\varepsilon|\xi|)^{2r} |\tilde{u}(\xi)|^2 d\xi.$$

Пространства $\mathring{H}_{s,\,\tau}(G)$ и $H_{s,\,\tau}(G)$ определяются аналогично $\mathring{H}_s(G)$ и $H_s(G)$. Пусть \varkappa_1 и \varkappa_2 — индексы факторизации эллиптических символов $A_0(x,\,\xi)$ и $A_1(x,\,\omega,\,|\xi|)$ в области G (см. $(^6)$). Для простоты предполагается, что \varkappa_1 и \varkappa_2 не зависят от $x' \in \Gamma$.

T е о р е м а 1. Hусть $|s-\mathrm{Re}\;\varkappa_1|<1/2$ и для любой $f\in H_{s-m_1}(G)$ сущест-

вует единственное решение $u_0 \in \check{H}_s(G)$ уравнения

$$pA_0(x, D)u_0(x) = f(x).$$
 (5)

Тогда при $0 < \varepsilon \le \varepsilon_0$, где ε_0 достаточно мало, для любой $f \in H_{s-m_1, \text{Re } \varkappa_2-m_2}(G)$ существует единственное решение u_ε уравнения (4), принадлежащее пространству $\mathring{H}_{s, \text{Re } \varkappa_2}(G)$.

Приводимая ниже схема доказательства теоремы 1 дает также способ-

построения приближенного решения уравнения (4).

Пусть Γ_{ρ} — окрестность Γ в G, расстояние от каждой точки которой до Γ меньше ρ . Предполагается, что ρ достаточно мало. Пусть $A_1(x', x_n, \epsilon \xi', \epsilon \xi_n)$ — символ п.д.о. A_1 , записанного в Γ_{ρ} в локальной системе координат (см. $(^3, ^6)$). Произведем факторизацию $A_1(x', x_n, \epsilon \xi', \epsilon \xi_n)$ по ξ_n при $0 \le x_n \le \rho$:

$$A_1(x', x_n, \varepsilon \xi', \varepsilon \xi_n) = A_-^{(1)}(x', x_n, \varepsilon \xi', \varepsilon \xi_n) A_+^{(1)}(x', x_n, \varepsilon \xi', \varepsilon \xi_n).$$
 (6)

Обозначим через $A_{+}(x', x_{n}, \epsilon \xi', \epsilon \xi_{n})$ гладкий по x эллиптический сим-

вол, совпадающий с $A_+^{(1)}(x', x_n, \epsilon \xi', \epsilon \xi_n)$ при $0 \le x_n \le \rho$ и равный $(1 + \epsilon^2 | \xi' |^2 + \epsilon^2 \xi_n^2)^{\kappa_2/2}$ при $2\rho \le x_n \le 3\rho$. Аналогично через A_- обозначается эллиптический символ, соединяющий гладким по x образом $A_-^{(1)}(x', x_n, \epsilon \xi', \epsilon \xi_n)$ при $0 \le x_n \le \rho$ с $(1 + \epsilon^2 | \xi' |^2 + \epsilon^2 \xi_n^2)^{(m_2 - \kappa_2)/2}$ при $2\rho \le x_n \le 3\rho$.

Вернемся в $\Gamma_{3\rho} \setminus \Gamma_{2\rho}$ от локальной системы координат (л.с.к.) к исходной системе координат в G и обозначим через $\Lambda_{\pm}(x,\, \epsilon \xi)$ символы п.д.о., отвечающих п.д.о. $A_{\pm}(x',\, x_n,\, \epsilon D',\, \epsilon D_n)$ в л.с.к. Далее продолжим гладким образом $\Lambda_{\pm}(x,\, \epsilon \xi)$ с $\Gamma_{3\rho} \setminus \Gamma_{2\rho}$ внутрь области G с сохранением эллиптичности.

Обозначим через $A_{+}^{(-1)}$ следующий оператор:

$$A_{+}^{(-1)}v = \sum_{j} \psi_{j} A_{j}^{\dagger} \varphi_{j} v,$$
 (7)

где $\{\varphi_j,\ U_j\}$ — разбиение единицы в \overline{G} , supp $\varphi_j \subset U_j$, $\psi_j \in C_0^\infty(U_j)$, $\varphi_j \psi_j \equiv \varphi_j$. Если $U_j \cap \Gamma = \emptyset$, то A_j^+ является п.д.о., в j-й л.с.к. с символом $A_+^{-1}(x',x_n,\,\epsilon\xi',\,\epsilon\xi_n)$. Если же $U_j \cap \Gamma = \emptyset$, то предполагается, что $U_j \cap \Gamma_{2\varrho} = \emptyset$, и через A_j^+ обозначается п.д.о. в исходной системе координат с символом $\Lambda_+^{-1}(x,\,\epsilon\xi)$. Аналогично определяется оператор $A_-^{(-1)}$ по символам $A_-(x',x_n,\,\epsilon\xi',\,\epsilon\xi_n)$ и $\Lambda_-(x,\,\epsilon\xi)$.

Будем искать решение уравнения (4) в виде $u_{\varepsilon} = A_{+}^{(-1)} v_{\varepsilon}$. Применим к (4) слева оператор $A_{+}^{(-1)}$. Получим

$$p(A_0(x, D) + A_{1\varepsilon}(x, D)) v_{\varepsilon} = pA_{-1}^{(-1)} lf,$$
 (8)

где $lf \in H_{s-m_1, \text{ Re }\varkappa_2-m_2}(\mathbf{R}^n)$ — произвольное продолжение f с G на \mathbf{R}^n , а для п.д.о. $A_{1s}(x,D)$ доказывается оценка

$$||A_{1\varepsilon}v||_{s-m_1} \le C_5 \varepsilon^{1-\delta} ||v||_s, \tag{9}$$

 $\|v\|_s$ — норма в $H_s(\mathbf{R}^n)$, $\delta > 0$ любое.

Отметим, что операторы $A_+^{(-1)}$ и $A_-^{(-1)}$ при $0<\varepsilon\leqslant \varepsilon_0$ однозначно отображают $H_{s, \text{ Re } \varkappa_2}(G)$ и $H_{s-m_1, \text{ Re } \varkappa_2-m_2}(G)$ на $H_s(G)$ и $H_{s-m_1}(G)$ соответственно, так что уравнение (8) эквивалентно уравнению (4).

В силу (9) и однозначной разрешимости уравнения (5), решение уравнения (8) существует и может быть найдено методом последовательных

приближений:

$$v_{\varepsilon} = v_{\varepsilon 1} + v_{\varepsilon 2} + \dots + v_{\varepsilon N} + \dots, \tag{10}$$

где $pA_0v_{\varepsilon_1}=pA_{-}^{(-1)}lf,\ pA_0v_{\varepsilon_2}=-pA_{1\varepsilon}v_{\varepsilon_1},\ldots,\ pA_0v_{\varepsilon_N}=-pA_{1\varepsilon}v_{\varepsilon,\ N-1},\ldots$ Если через $v_{\varepsilon}^{(N)}$ обозначить сумму первых N членов в (10), то имеют место следующие оценки:

$$\|v_{\varepsilon} - v_{\varepsilon}^{(N)}\|_{s} \leq C_{\delta} e^{N+1-\delta} \|pA_{-}^{(-1)} lf\|_{s-m_{1}} \leq C_{1\delta} e^{N+1-\delta} \|f\|_{s-m_{1}, \operatorname{Re} \varkappa_{2}-m_{2}}^{+},$$

$$\|u_{\varepsilon} - u_{\varepsilon}^{(N)}\|_{s, \operatorname{Re} \varkappa_{2}} \leq C_{2\delta} e^{N+1-\delta} \|f\|_{s-m_{1}, \operatorname{Re} \varkappa_{2}-m_{2}}^{+} \quad \forall \delta > 0,$$

$$(11)$$

rie $u_{\varepsilon}^{(N)} = A_{+}^{(-1)} v_{\varepsilon}^{(N)}$.

Отметим, что асимптотическое разложение (10) не требует, кроме принадлежности пространству $H_{s-m_1, \text{Re } \varkappa_2-m_2}(G)$, никакой дополнительной глад-

4. Предположим теперь, что $f(x) \in H_M(G)$, $M \gg 1$ (в частности, $f(x) \subseteq$ $\in C^{\infty}(\overline{G})$). Тогда можно получить более простое выражение для разложения по є решения уравнения (4), в частности, получить более простое выражение для главного члена асимптотики. А именно, справедлива сле-

T е о р е м а 2. Пусть $f(x) \in C^{\infty}(\overline{G})$ и выполнены все условия теоремы 1. Tогда в Γ_{\circ} для любого N в соответствующей л.с.к. справедливо следую-

шее разложение:

$$u_{\varepsilon} = A_{+}^{(-1)}(x', x_{n}, 0, \varepsilon D_{n}) u_{0}(x', x_{n}) + \sum_{k=1}^{N} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} \ln^{p} \varepsilon A_{+}^{(-)}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} u_{kp}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} u_{kp}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}, 0, \varepsilon D_{n}) u_{kp}(x', x_{n}) + \sum_{k=1}^{N+1} \sum_{p=0}^{N+1} \varepsilon^{k} u_{kp$$

$$+\sum_{k=2}^{N+1}\sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon F_{\xi_{n}}^{-1} [A_{kp}^{+}](x', x_{n}, 0, \varepsilon \xi_{n}) (\xi_{n} + i)^{-x_{1}} v_{kp}(x') + w_{N+1}^{(\varepsilon)},$$
(12)

$$+\sum_{k=2}^{N+1}\sum_{p=0}^{k-1} \varepsilon^{k} \ln^{p} \varepsilon F_{\xi_{n}}^{-1} [A_{kp}^{+}](x', x_{n}, 0, \varepsilon \xi_{n}) (\xi_{n} + i)^{-x_{1}} v_{kp}(x') + w_{N+1}^{(\varepsilon)},$$
(12)

где $A_{+}^{(-1)}(x', x_n, 0, \varepsilon D_n) - n.\partial.o.$ в \mathbf{R}^1 с символом $(A_{+}^{(1)}(x', x_n, 0, \varepsilon \xi_n))^{-1}$ (см. формулу (6)), $A_{hp}^+(x', x_n, 0, \eta_n) = O(|\eta_n|^{-\operatorname{Re} \kappa_2 - 1 + \delta})$ при $|\eta_n| \to \infty$, $v_{kp}(x') \in C^{\infty}(\Gamma), \ u_{kp}(x', \ x_n) \in C^{\infty}(G) \cap \mathring{H}_s(G), \ F_{\xi_n}^{-1} - one parop \ oбратного$ преобразования Фурье по ξ_n , $\|w_{N+1}^{(\varepsilon)}\|_{s, \text{Rex}_2} \leq C_{\delta} \varepsilon^{N+1-\delta} \|f\|_{N_1}^+$, $N_1 = N_1(N)$ достаточно велико, $\delta > 0$ любое.

Главный член асимптотики имеет вид

$$u_{\varepsilon} = A_{+}^{(-1)}(x', x_{n}, 0, \varepsilon D_{n}) u_{0}(x', x_{n}) + w_{1}^{(\varepsilon)}, \tag{13}$$

 $u_0(x) \in \mathring{H}_s(G)$ — решение уравнения (5), $\|w_1^{(\varepsilon)}\|_{s, \text{Re } \varkappa_2} = O(\varepsilon^{1-\delta})$.

При $\text{Re } \varkappa_1 > -1$ выражение (13) может быть записано в более простом

$$u_{\varepsilon} = e^{i\frac{\pi}{2}(x_{i}+1)} \Gamma(x_{1}+1) F_{\xi_{n}}^{-1} A_{+}^{(-1)}(x', x_{n}, 0, \varepsilon \xi_{n}) (\xi_{n}+i0)^{-x_{i}-1} \cdot w_{0}(x', x_{n}) + w^{(\varepsilon)},$$
(14)

где $w_0 = x_n^{-\mathsf{x}_1} \, u_0(x', \, x_n), \, \|w^{(\varepsilon)}\|_{s, \, \mathrm{Re} \, \mathsf{x}_2} = O(\varepsilon^{1-\delta}).$ Отметим, что в $G \setminus \Gamma_\rho \, u_\varepsilon$ имеет разложение вида

$$u_{\varepsilon} = u_0(x) + \varepsilon u_1(x) + \dots + \varepsilon^N u_N(x) + \varepsilon^{N+1} u_{N+1}^{(\varepsilon)}(x), \tag{15}$$

где $u_0(x)$ та же функция, что и в (12). В Γ_0 при $x_n \ge \rho_0 > 0$ выражение вида (15) может быть получено из (14) путем разложения $A_+^{(-1)}$ (x', x_n , 0, $\varepsilon \xi_n$), $A_{hp}^+(x', x_n, 0, \varepsilon \xi_n)$ по ε .

Доказательство теоремы 2 более сложно, чем доказательство теоремы 1, хотя принципиальная схема одна и та же. Оно содержит, в частности, процедуру определения членов разложения (12). Отметим, что методика Вишика — Люстерника (7) неприменима в рассматриваемом случае. Примером п.д.у. с малым параметром, удовлетворяющего условиям теорем 1 и 2, служит контактная задача для упругого слоя толщины є, покоящегося на жестком основании (см. (1, 2)). В этом случае

$$A_1(x, \omega, \varepsilon |\xi|) = \frac{4 \operatorname{sh}^2 \varepsilon |\xi|}{\varepsilon |\xi| (2\varepsilon |\xi| + \operatorname{sh} 2\varepsilon |\xi|}, \ A_0 \equiv 1, A_2 \equiv 0, \varkappa_1 = 0, \varkappa_2 = -\frac{1}{2}.$$

Наш способ получения асимптотики отличается от предложенного в (2) и приводит к другим представлениям для приближенного решения.

Замечание 1. Если символ $A_1(x, \omega, \varepsilon|\xi|)$ и все его производные в л.с.к. при $\omega' = 0$ бесконечно дифференцируемы по $\eta_n = \varepsilon \xi_n$ в нуле (ср. с определением класса $D_{\alpha}^{(0)}$ в (6)) и аналогичным условиям удовлетворяет A_2 , то в разложении (12) отсутствуют $\ln^p \varepsilon$.

Замечание 2. Выше была рассмотрена первая краевая задача для уравнения (4). Аналогичными методами можно получить асимптотику решения общей краевой задачи для п.д.о. с граничными условиями и по-

тенциалами.

Институт проблем механики Академии наук СССР Москва Поступило 28 XI 1972

цитированная литература

¹ В. М. Александров, И. И. Ворович, ПММ, 24, № 2 (1960). ² В. А. Бабешко, ДАН, 204, № 3 (1972). ³ Г. И. Эскин, Тр. Московск. матем. общ., 28 (1973). ⁴ А. С. Демидов, УМН, 27, в. 1 (1972). ⁵ Л. Д. Покровский, ДАН, 188, № 3 (1969). ⁶ М. И. Вишик, Г. И. Эскин, УМН, 20, в. 3 (1965). ⁷ М. И. Вишик, Л. А. Люстерник, УМН, 12, в. 5 (1957).