УДК 518.49

MATEMATUKA

Академик АН МССР В. А. АНДРУНАКИЕВИЧ, В. И. АРНАУТОВ, М. И. УРСУ

ВЕДДЕРБАРНОВСКОЕ РАЗЛОЖЕНИЕ НАСЛЕДСТВЕННО ЛИНЕЙНО-КОМПАКТНЫХ КОЛЕЦ

Теорема Веддербарна об отщеплении радикала * конечномерной ассоциативной алгебры в ряде работ переносилась на различные классы колец и алгебр. В связи с изучением топологических колец различными авторами делались попытки перенести эту теорему и на топологические кольца. В этом направлении наиболее полно изучены бикомпактные ассоциативные кольца, а именно, для них получен критерий отщепляемости радикала (см. (4)). В отдельных работах теорема Веддербарна доказывалась и для линейно-компактных ассоциативных колец и алгебр (см., например, (2,5)). Однако в силу широты класса линейно-компактных колец пока не удается получить критерий отщепляемости радикала.

В настоящей работе рассматривается класс наследственно линейно-компактных колец, который является промежуточным между бикомпактными вполне несвязными кольцами и линейно-компактными кольцами. Доказывается ряд свойств этих колец, и для них получен критерий отщепляемости радикала (теорема 3).

Напомним, что топологическое кольцо ** R называется лицейпо-компактным, если оно обладает базисом окрестностей нуля из левых идеалов и любой фильтр классов вычетов по замкнутым левым идеалам имеет непустое пересечение (см., например, (6)).

Топологическое кольцо \hat{R} называется паследственно линейно-компактным кольцом, если всякое его замкнутое подкольцо является линейно-

компактным кольцом.

Замечание 1. Очевидно, что всякое бикомпактное вполне несвязное кольцо является наследственно липейно-компактным кольцом.

Замечание 2. Всякое замкнутое подкольцо и любой непрерывный гомоморфный образ в кольцо с базисом окрестностей пуля из левых идеалов наследственно линейно-компактного кольца являются наследственно линейно-компактными кольцами.

Лемма 1. Наследственно линейно-компактное кольцо без ненулевых идемпотентов радикально.

Так как радикал Джекобсопа произвольного кольца не содержит

идемпотентов, то из леммы 1 получаем

Следствие 1. Всякое замкнутое подкольцо радикального наследственно линейно-компактного кольца радикально.

Теорема 1. Всякий элемент радикального наследственно линейнокомпактного кольца R топологически нильпотентен.

Лемма 2. Любой элемент дискретного наследственно линейно-компактного кольиа R имеет конечный аддитивный порядок.

Лемма 3. Радикальное дискретное наследственно линейно-компакт-

ное кольио R простой характеристики р конечно.

 Π е м м а 4. Радикальное дискретное наследственно линейно-компактное кольцо R, аддитивная группа которого не содержит групп типа p^{∞} , конечно.

^{*} Под радикалом в этой работе понимается радикал Джекобсона. ** Здесь и ниже под кольцом будем понимать ассоннативное кольпо.

Замечание 3. Легко проверить, что если аддитивная группа кольца R является прямой суммой групп типа p^{∞} , то $R^2=0$.

Лемма 5. Радикальное дискретное наследственно линейно-компакт-

ное кольцо нильпотентно.

Следствие 2. Радикальное наследственно линейно-компактное кольцо с базисом идеальных окрестностей нуля является топологически нильпотентным кольцом.

Лемма 6. Наследственно линейно-компактное тело R является неко-

торым алгебраическим расширением конечного поля.

Пемма 7. Некоммутативное полупростое наследственно линейнокомпактное кольцо R без двусторонних замкнутых идеалов является мат-

ричным кольцом над конечным полем.

R является прямой суммой $J_1 \oplus J_2$, где J_1 — полная прямая сумма с тихоновской топологией алгебраических расширений конечных полей, а J_2 —полная прямая сумма с тихоновской топологией матричных колец над конечными полями.

Напомним, что дискретное кольцо R с радикалом N(R) называется SBJ-кольцом, если:

- 1) уравнение $x^2-x=z$, где $z\in N(R)$, имеет такое решение $z_1\in N(R)$,
- 2) подкольцо элементов из R, коммутирующих с z, совпадает с подкольцом элементов, коммутирующих с z_1 .

Аналогично (1), предложение 3, стр. 84, доказывается

Пемма 8. Наследственно линейно-компактное кольцо является SBJкольцом.

Пемма 9. Примарное наследственно линейно-компактное кольцо R алгебраически изоморфно матричному кольцу над некоторым вполне примарным наследственно линейно-компактным кольцом.

 Π емма 10. Любое семейство $S = \{e_{\alpha} | \alpha \in \Omega\}$ ортогональных идем-

потентов наследственно линейно-компактного кольца суммируемо.

 Π е м м а 11. Пусть R — наследственно линейно-компактное кольцо. Тогда любое множество ортогональных идемпотентов из $R \mid N(R)$ можно поднять до множества оротогональных идемпотентов в R.

Лемма 12. Пусть R — наследственно линейно-компактное кольцо.

Тогда существуют такие замкнутые подкольца А и В, что:

1) R = A + B,

- 2) $A \cap B = \{0\},\$
- 3) $B \subseteq N(R)$.

4) А является полной прямой суммой с тихоновской топологией примарных наследственно линейно-компактных колеи.

Говорим, что топологическое кольцо R допускает веддербарновское разложение в категории топологических колец, если его радикал N(R) замкнут и существует такое замкнутое подкольцо S, что:

1) R = S + N(R), 2) $S \cap N(R) = \{0\}$,

3) каноническое отображение подкольца S кольца R на R|N(R) явля-

ется топологическим изоморфизмом.

II емма 13. Если топологическое кольцо R допускает веддербарновское разложение в категории топологических колец и S— соответствующее замкнутое подкольцо, то аддитивная группа кольца R топологически изоморфна прямой сумме аддитивных групп подколец S и N(R).

Лемма 14. Примарное коммутативное наследственно линейно-компактное кольцо R с единицей простой характеристики р допускает вед-

дербарновское разложение в категории топологических колец.

 Π в м м а 15. Если R- такое наследственно линейно-компактное кольцо простой характеристики, что R|N(R)- конечное поле, то R допускает веддербарновское разложение в категории топологических колец.

 Π ем м а 16. Пусть R_1 — замкнутое подкольцо такого наследственно линейно-компактного кольца R простой характеристики, для которого R | N(R) -конечное поле.

Tогда для любого веддербарновского разложения $S_1+N\left(R_1
ight)$ кольца R_1 в категории топологических колец существует такое веддербарновское разложение S+N(R) кольца R в категории топологических колец, что $S_1 \subseteq S$.

Лемма 17. Всякое вполне примарное наследственно линейно-компактное кольцо R простой характеристики р допускает веддербарновское разложение в категории топологических колец.

Теорема 3. Наследственно линейно-компактное кольцо R допускает веддербарновское разложение в категории топологических колец тогда и только тогда, когда любой элемент из R|N(R) конечного аддитивного порядка имеет прообраз в кольце R того же аддитивного порядка.

H e o f x o д и м o c т ь. Пусть S + N(R) — некоторое веддербарновское разложение кольца R и \bar{x} — произвольный элемент из R | N(R) конечного аддитивного порядка. Если теперь x — некоторый прообраз в S элемента \bar{x} , то порядки элементов x и \bar{x} совпадают.

Достаточность. Пусть наследственно линейно-компактное кольдо R удовлетворяет условиям теоремы. По лемме 12 существуют такие замкнутые подкольца A и B, что R=A+B, $B\subseteq N(R)$ и A является полной прямой суммой с тихоновской топологией примарных наследственно линейно-компактных колец A_{α} . Покажем вначале, что каждое из колец A_{α} имеет простую характеристику. В самом деле, если e_{α} — единица кольца A_{α} , то $A_{\alpha}=e_{\alpha}Ae_{\alpha}=e_{\alpha}Re_{\alpha}$. Тогда $N(A_{\alpha})=N(R)\cap A_{\alpha}$ и, значит, $A_{\alpha} + N(R) | N(R) \cong A_{\alpha} | N(A_{\alpha}).$

Так как $A_{\alpha}|_{N(A_{\alpha})}$ — матричное кольцо над телом, то оно дискретно и его единица имеет простой аддитивный порядок. Если теперь \bar{e}_a — образ элемента e_{α} в $A_{\alpha}+N(R)$ |N(R)|, то \bar{e}_{α} является единицей в $A_{\alpha}+N(R)$ |N(R)|и, значит, имеет простой аддитивный порядок p_{α} . По условию теоремы, существует такой элемент $a \in N(R)$, что $p_{\alpha}(e_{\alpha} + a) = 0$ и, значит, $p_{\alpha}(e_{\alpha} + e_{\alpha}ae_{\alpha}) = p_{\alpha}e_{\alpha}(e_{\alpha} + a)e_{\alpha} = 0$. Так как e_{α} – единица в A_{α} и $e_{\alpha}ae_{\alpha} \in e_{\alpha}N(R)e_{\alpha} = N(A_{\alpha})$, то элемент $e_{\alpha} + e_{\alpha}ae_{\alpha}$ обратим в A_{α} , т. е. $(e_{\alpha} + a)e_{\alpha} = n$ $+e_{\alpha}ae_{\alpha})^{-1}\in A_{\alpha}$. Тогда $p_{\alpha}e_{\alpha}=p_{\alpha}(e_{\alpha}+e_{\alpha}ae_{\alpha})\cdot(e_{\alpha}+e_{\alpha}ae_{\alpha})^{-1}=0$ и, значит, $p_{\alpha}A_{\alpha}=0$, т. е. A_{α} имеет простую характеристику.

По лемме 9 A_{α} изоморфно матричному кольцу над некоторым вполне примарным наследственно линейно-компактным кольцом B_{lpha} , т. е. $A_{lpha}=$ $=(B_{\alpha})_{n_{\alpha}}$. Согласно лемме 17, каждое B_{α} допускает веддербарновское разложение $S_{\alpha}+N(B_{\alpha})$, где $S_{\alpha}-$ поля. Тогда $A_{\alpha}=(S_{\alpha})_{\pi_{\alpha}}+(N(B_{\alpha}))_{\pi_{\alpha}}$. Так как $N(A_{\alpha})=(N(B_{\alpha}))_{n_{\alpha}}$ (см. (1), стр. 25) и в $(S_{\alpha})_{n_{\alpha}}$ возможна только дискретная линейно-компактная топология, то $(S_{lpha})_{n_{lpha}}+(N(B_{lpha}))_{n_{lpha}}$ является веддербарновским разложением кольца A_{lpha} в категории топологических колец.

Eсли S — кольцо, равное полной прямой сумме с тихоновской топологией дискретных колец $(S_{\alpha})_{n_{\alpha}}$, то S является липейно-компактным кольцом и подкольцом топологического кольца R. Следовательно, $\,S-\,$ замкнутое подкольцо кольца R. Так как $N(A_{\alpha}) \subseteq N(R)$ для любого α и N(R) замкнутый идеал в R, то полная прямая сумма подколец $N(A_{\alpha})$ содержится в N(R). Тогда $A \subseteq S + N(R)$, и, значит, $R = A + B \subseteq S + N(R) + B =$ = S + N(R). Так как S — полупростое замкнутое подкольцо кольца R, то, согласно следствию 1, $N(R) \cap S = \{0\}$.

Для завершения доказательства теоремы осталось показать топологический изоморфизм колец S и R|N(R).

В самом деле, канонический изоморфизм φ кольца S на $R \mid N(R)$ является непрерывным. Так как S — полупростое липейно-компактное кольцо, то государств чане в бизлиотыка

2 ДАН, т. 211, № 1

оно линейно-компактное в узком смысле (см. (³), стр. 294), и, значит, ф— открытое отображение, т. е. ф является топологическим изоморфизмом. Этим теорема полностью доказана.

Институт математики с Вычислительным центром Академии наук МССР Кининсв Поступило 6 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Джекобсон, Строение колец, ИЛ, 1961. ² Н. Kurke, Math. Nachr., 39, 33 (1969). ³ Н. Leptin, Math. Zs., 66, 4, 289 (1957). ⁴ К. Numacura, Proc. Japan. Acad., 35, 7, 313 (1959). ⁵ Ті Үеп, Proc. Am. Math. Soc., 8, 4, 698 (1957). ⁸ D. Zelinsky, Am. J. Math., 75, 79 (1953).