УДК 546.78+541.452+546.212

КИМИХ

В. Ф. ЧУВАЕВ, Г. М. ШИНИК, Н. А. ПОЛОТЕБНОВА, академик В. И. СПИЦЫН

ИССЛЕДОВАНИЕ КРИСТАЛЛОГИДРАТОВ ФОСФОРНОВОЛЬФРАМОВАНАДИЕВЫХ ГЕТЕРОПОЛИКИСЛОТ МЕТОДОМ П.М.Р.

В работе (¹) проведено сравнительное изучение спектров п.м.р. дегидратированных фосфорновольфрамованадиевых гетерополикислот (ФВВК) с общей формулой $H_{3+x}[PW_{12-x}V_xO_{40}]$, где $x=1,\,2,\,3,\,4$. Было показано, что в структуре ФВВК три иона H^+ расположены так же, как в фосфорновольфрамовой кислоте (ФВК), $H_3[PW_{12}O_{40}]$ (²). Ионы водорода, которые добавляются по мере замещения вольфрама на ванадий, образуют связи

с неподеленными атомами кислорода октаэдров VO6 аниона.

В настоящей работе приводятся результаты псследования спектров п.м.р. гидратов различной водности ФВВК с одним и двумя атомами ванадия в анионе $H_4[PW_{11}VO_{40}]\cdot nH_2O$ и $H_5[PW_{10}V_2O_{40}]\cdot nH_2O$. Образцы кислот с промежуточным содержанием воды получались выдерживанием исходных высоководных препаратов на воздухе различное время и при различной температуре. Первые производные линий поглощения п.м.р. образцов ФВВК (рис. 1) записывались при 80° K на спектрометре широких линий в нашем институте.

Форма широких линий в спектрах (рис. 1) характерна для высоководных гидратов 12-гетерополикислот (12-ГПК) и определяется суммой линий поглощения молекул H_2O и определенного числа ионов H_3O^+ (3). Благодаря этому в широкой части спектров ясно выражены две линии. Линия с шириной $\delta H_1 \simeq 20$ гс характерна для ионов гидроксония, линия с $\delta H_2 \simeq 12$ гс относится к молекулам гидратной воды. Анализ спектров высоководных образцов (n > 20) показывает, что все ионы водорода исход-

ных кислот гидратированы, т.е. образуют поны Н₃О⁺.

С понижением содержания воды δH_1 и δH_2 уменьшаются и появляется узкая центральная линия нарастающей интенсивности (рпс. 1). Такого рода изменения в спектрах 12-ГПК обусловлены процессом дегидратации кислотных протонов, которому предшествует деформация ионов H_3O^+

вследствие взаимодействия с комплексным анионом (3).

Этот процесс можно проследить по изменению интенсивности узкой линии соответствующих спектров (рис. 1). Полностью дегидратированные кислоты $H_{3+x}[PW_{12-x}V_xO_{40}]$ дают спектр п.м.р. в виде узких линий (рис. 1ABe) с заметной тонкой структурой (1). На графиках рис. 2 дана интенсивность узкого компонента в процентах от интенсивности его

в спектре соответствующей дегидратированной структуры.

Зависимость относительной интенсивности узкой линии в спектрах кислоты $H_4[PW_{11}VO_{40}]\cdot nH_2O$ (рис. 2) имеет два участка. Первый, до гидрата $H_4[PW_{11}VO_{40}]\cdot 5H_2O$, обусловлен деформацией ионов H_3O^+ (3). Второй, ниже гидрата $H_4[PW_{11}VO_{40}]\cdot 5H_2O$, обнаруживает быстрый рост узкой линии при удалении 4 молекул воды. Здесь ионы H^+ освобождаются от гидратирующих их молекул воды. Последняя, по ходу обезвоживания, молекула воды, так же как в ΦBK (2), не связана с ионами водорода. По изменению узкой линии в процессе дегидратации кислоты $H_4[PW_{11}VO_{40}]\cdot nH_2O$ не удается заметить структурную неэквивалентность положения ионов водорода, которая следует из спектра п.м.р. безводной кислоты $H_4[PW_{11}VO_{40}]$ (1). Можно заключить, что энергия дегидратации 4 ионов H^+ приблизительно одинакова.

На графике рис. 3 показано изменение ширины линии (δH_1) , относящейся к ионам гидроксония. Для ионов H₃O+ в гидратах минеральных кислот величина δH_1 составляет 18—19 гс (4) в ГПК δH_1 уменьшается по мере дегидратации вследствие деформации ионов H_3O^+ . Последняя, очевидно, зависит от энергии взаимодействия аниона с ионом H₃O⁺. Для раз-

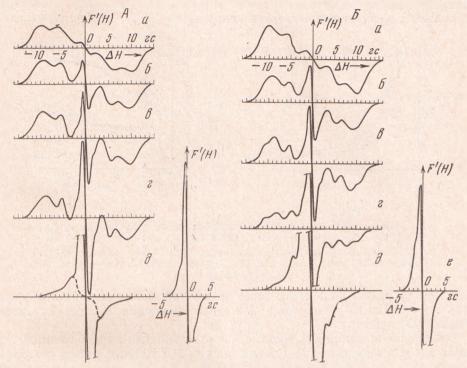


Рис. 1. Первые производные линии поглощения п.м.р. при 80° К в гидратах $H_4[PW_{11}VO_{40}] \cdot nH_2O$ (A) и $H_5[PW_{10}V_2O_{40}] \cdot nH_2O$ (B). Значения n для A и B соответственно: 32; 31; $\delta-13$; 10; $\epsilon-9$; 6; $\epsilon-5$; 3,5; $\delta-2$; n=0, спектр в меньшем масштабе

личных ГПК деформация становится заметной в спектрах п.м.р. раньше или позже по ходу обезвоживания и качественно характеризует степень

сродства ГП-аниона к протону (5). Как следует из рис. 3, δH_1 для кислоты $H_4[PW_{11}VO_{40}]\cdot nH_2O$ уменьшается, монотошно достигая значения 17 гс. Та же зависимость для кислоты $H_5[PW_{10}V_2O_{40}] \cdot nH_2O$ имеет иной характер. Сравнивая графики δH_4 (рис. 3), можно отметить, что в кислоте $H_5[PW_{10}V_2O_{40}] \cdot nH_2O$ изменение структуры ионов гидроксония начинается с более высоководных гидратов и проходит энергичнее. После некоторой стабилизации в области $n = (5 - 10) \,\mathrm{H}_2\mathrm{O} \,\delta H_1$ уменьшается до 16 гс.

Характерной особенностью спектров маловодных гидратов исследованных кислот является линия воды с $\delta H_2 = 8$ гс и вторым моментом $\Delta H^2 =$ = 10 гс, что заметно меньше обычных значений ($\delta H = 10-12$ гс; $\Delta \overline{H}^2 \geqslant 16 \; {
m rc}^2$). Эта линия наблюдается в гидратах ${
m H_4[PW_{11}VO_{40}] \cdot H_2O}$ и $H_5[PW_{10}V_2O_{40}] \cdot 2H_2O$ (рис. $1AB\partial$), где остаточная вода не связана с ионами водорода. Зависимость δH_2 от содержания гидратной воды (рис. 3) показывает, что в кислоте $H_4[PW_{11}VO_{40}] \cdot nH_2O$ конфигурация одной молекулы воды резко меняется при переходе $H_4[PW_{11}VO_{40}] \cdot 3H_2O$ к $H_4[PW_{11}VO_{40}] \cdot H_2O$. Для второй кислоты этот переход имеет более постепенный характер и его удается зафиксировать при удалении 4 молекул воды.

Очевидно, в этом интервале дегидратации положение и прочность связи одной-двух молекул воды с анионом резко меняется. В результате увеличивается расстояние H-H молекул воды до $\sim 1,8$ Å. Нужно отметить, что аналогичное изменение наблюдалось в гидрате $H_5[BW_{12}O_{40}] \cdot 2H_2O$ боровольфрамовой кислоты (6). Несомненно, обнаруженный эффект является интересной особенностью структуры ГПК. Широкие линии п.м.р. гидратов кислоты $H_5[PW_{10}V_2O_{40}] \cdot nH_2O$ имеют еще одну особенность. Начиная с гидрата, содержащего шесть молекул воды (рис. 1B), в спектрах появляется в виде плеча четвертая линия с $\delta H = 20$ гс. Трудно установить,

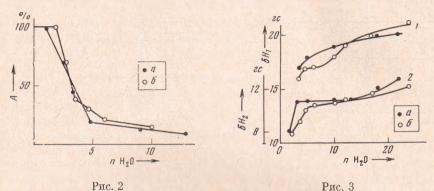


Рис. 2. Зависимость отношения (A) интенсивности узкой линии гидратов $H_{3+x}[PW_{12-x}V_xO_{40}] \cdot nH_2O$ и $H_{3+x}[PW_{12-x}V_xO_{40}]$, a-x=1; b-x=2 Рис. 3. Зависимость ширины линии иопов H_0O^+ (1) и молекул H_2O (2) в спектрах п.м.р. гидратов $H_{3+x}[PW_{12-x}V_xO_{40}] \cdot nH_2O$, a,b-x=1 же, что на рис. 2

есть ли эта линия в спектрах более водных образцов, так как обнаружение ее становится возможным благодаря смещению максимума линии

ионов Н₃О+ к центру.

Обнаруженная линия, вероятно, обусловлена дипольным взаимодействием одной молекулы воды с двумя понами H^+ . Действительно, из графика рис. 2 следует, что поны H^+ кислоты $H_5[PW_{10}V_2O_{40}]\cdot nH_2O$ изолируются от связанных с ними молекул H_2O в две стадии. Первый прирост узкой линии соответствует появлению примерно двух свободных ионов H^+ после удаления двух молекул H_2O . Удаление двух следующих молекул H_2O освобождает остающиеся три пона водорода. Можно полагать, что одна молекула H_2O связывает два попа H^+ , образуя конфигурацию типа тетраксония H_4O^{2+} . Возможность существования такой группировки уже отмечалась при исследовании боровольфрамовой кислоты (6) и свидетельствует о сложном характере взаимодействия понов H^+ и молекул воды с $\Gamma\Pi$ -анионом.

Таким образом, спектры п.м.р. обнаруживают специфические особенно-

сти гидратной структуры ФВВК с одним и двумя атомами ванадия.

Характер дегидратации понов H^+ в кислоте $H_5[PW_{10}V_2O_{40}] \cdot nH_2O$ позволяет предполагать образование четырехспиновой группировки H_4O^{2+} . В гидратах $H_4[PW_{11}VO_{40}] \cdot H_2O$ и $H_5[PW_{10}V_2O_{40}] \cdot 2H_2O$ расстояние протон—протон молекул воды, $r_{\rm H-H}=1,8$ Å, существенно больше встречающихся в кристаллогидратах.

Институт химической физики Академии наук СССР Москва

Поступило 29 XII 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. Ф. Чуваев, Г. М. Шиник и др., ДАН, 204, 1403 (1972). ² В. Ф. Чуваев, С. А. Бахчисарайцева, В. И. Спицын, ДАН, 165, 1126 (1965). ³ В. Ф. Чуваев, В. И. Спицын, ДАН, 166, 160 (1966). ⁴ R. E. Richards, J. A. S. Smith, Trans. Farad. Soc., 47, 1261 (1951); 48, 675 (1952). ⁵ В. Ф. Чуваев, Е. В. Ванчикова и др., ДАН, 210, № 2 (1973). ⁶ В. Ф. Чуваев, Х. И. Лунк, В. И. Спицын, ДАН, 181, 1156 (1968).