УДК 54-385:547.35.74:535.343

ХИМИЯ

Г. Н. БОНДАРЕНКО, М. П. ТЕТЕРИНА

изучение и.-к. спектров поглощения π -аллильных соединений никеля

(Представлено академиком Б. А. Долгоплоском 2 II 1973)

Колебательным спектрам п-аллильных соединений переходных металлов в последнее время уделяется большое внимание. В работах (1-3) были получены и.-к. и к.р. спектры п-аллильных соединений палладия и выполнено полное отнесение колебательных частот. Аллильные соединения никеля изучены гораздо менее подробно. Спектры аллилникельгалогенидов в области 400—4000 см⁻¹ были получены Фишером и Бюргером (4-6), однако никакого обсуждения полос поглощения в этих работах сделано не было.

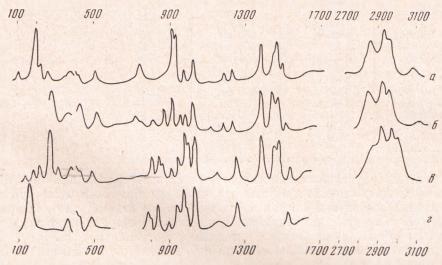


Рис. 1. И.-к. спектры π -аллильных соединений никеля: $a = (\pi - C_3 H_5 NiBr)_2$, $6 = (\pi - C_4 H_7 NiCl)_2$, $6 = (\pi - C_5 H_9 NiCl)_2$, $6 = (\pi - C_5 H_9 NiJ)_2$

Мы изучили и.-к. спектры поглощения димерных молекул (RNiHal)₂, где

в области 50—4000 см⁻¹ и наблюдаемые полосы сопоставлены с соответствующими полосами аналогичных соединений палладия. Все изученные аллильные соединения никеля готовили по стандартной методике взаимодействия алкенилгалогенида с карбонилом никеля (5). Спектры очищенных перекристаллизацией комплексных соединений снимали в таблетках, прессованных с КВг, и в суспензиях с вазелиновым маслом на приборах: UR-20, Fis-3 фирмы «Hitachi» и «Perkin — Elmer-425». Образцы для снятия спектров готовили в специальном боксе, в котором строго поддерживалась сухая инертная атмосфера. Спектры изученных соединений см. на рис. 1, а предполагаемые отнесения колебательных частот в табл. 1.

(π-C ₃ H ₆ NiBr) ₂	(=-C4H7NiCl)2	(π-C ₅ H ₉ NiCl) ₂	(π-C ₅ H ₉ NiJ) ₂	Отнесение
150 сл.	Jer Sainta	140 сл.	160 o.c.	STATE SHIP
	THE RIE	190 сл.	100 0.6.	v _{Ni} _J
200 o.c.		150 0.1.		$v_{ m Ni-Br}$
224 пл.	Service Allinois	210 сл.		MI-BI
270 сл.	Vancous Philippins		The second second	
	280 o.c.	275 o.c.		v _{Ni-Cl}
	0.77	300 пл.		
380 cp.	375 ср.	375 ср.	360 ср.	v _s Ni — C
440 cp.	435 ср.	435 ср.	430 ср.	vas Ni — C
520 ср.	520 cp.	495 ср.	495 ср.	δ C==C==C
760 cp.	730 cp.	805 cp.	795 ср.	ρ CH ₂
			800 пл.	
	820 сл.	845 ср.	840 ср.	CH ₃
	870 ср.	860 ср.		
910 o.c.	915 o.c.	910 сл.	900 сл.	πСН
935 с.	960 ср.	945 ср.	945 ср.	ρ CH ₂
980 ср.	980 ср.	980 o.c.	980 o.c.	P CH ₂
		1000 o.c.	995 с.	
1030 ср.	1025 ср.	1035 o.c.	1035 o.c.	v _s C····C···C
	1125 сл.			
1190 сл.	1190 сл.	1155 сл.	1160 сл.	δСΗ
1240 сл.	1240 сл.	1250 ср.	1250 ср.	P CH ₂
1380 с.	1380 с.	1380 o.c.	_ *	δ_s CH ₂ + CH ₃
1450 пл.	1440 с.	1440 o.c.		
1465 с.	1470 c.	1470 o.c.		δ_{as} CH ₂ + CH ₃
1495 ср.	1520 ср.	1530 ср.	1530 ср.	v_{as} C=C=C

^{*} Полоса закрыта из-за поглощения вазелинового масла.

Рентгеноструктурных данных для π -аллилгалогенидов никеля в литературс нет, однако можно предполагать, что геометрическая конфигурация аллильных соединений пикеля не должна сильно отличаться от конфигурации соответствующих соединений палладия. Изучение спектров я.м.р. для π -пентенилникельгалогенидов (7) показало, что аллильный лиганд в этих соединениях имеет строго симметричную структуру 1,3-диметилаллила.

Димерная молекула л-аллилпалладийгалогенида обладает точечной группой симметрии \check{C}_{2h} (8). По правилам отбора для этого типа симметрии из 54 колебаний 27 ($12 \, {\rm A}_u$ и $15 \, {\rm B}_u$) — активны в н.-к. спектре и 27 колебаний (15 Ад и 12 Вд) активны в спектре к.р. Для отнесения полос поглощения аллильных соединений палладия снимали и.-к. спектры и спектры к.р. в различных агрегатных состояниях при использовании поляризованного света и изотонов палладия. Однако до сих пор спорным остается вопрос об отнесении полос поглощения делокализованной связи С == С == С. В работе Фритца (9), где была сделана первая попытка отнесения колебательных частот аллильных соединений, этому типу колебаний были приписаны полосы $1458 (v_{as})$ и $1021 \text{ см}^{-1} (v_s)$. В одной из работ Накамото и сотрудников (3) полоса 1490 см $^{-1}$ отнесена к v_{as} и 1020 см $^{-1}$ к v_{s} . Адамс и сотрудники получили и.-к. и спектры к.р. л-аллилпалладийгалогенидов в различных агрегатных состояниях при использовании поляризованного света и приписали этим колебаниям полосы 1385 (v_{as}) и 1043 см⁻¹ (v_{s}), а полосу 1495 см-1 они отнесли к $\delta_{\text{СН}_2}$. Подобным же образом относят эти колебания Девидсон и Эндрюс (10) для л-аллилмарганецтетракарбонила, но отмечают, что вряд ли это колебание может быть строго характеристичным, т. е. что оно может быть смещанным с деформационным колебанием СН2.

В и.-к. спектре π -аллилникельбромида мы наблюдали полосу средней интенсивности в области 1495 см⁻¹, которую мы склонны отнести к колебанию ν_{as} С==C=C. поскольку в спектрах (π -C₄H₇NiCl)₂, (π -C₅H₈NiCl)₂ и

(л-C₅H₉NiJ)₂ (см. рис. 1) имеется полоса примерно такой же интенсивности в области 1510—1525 см-1. Сдвиг этой полосы в коротковолновую область спектра с появлением одной или двух метильных групп в аллильном соединении может быть объяснен увеличением электронной плотности связи С=С=С за счет положительного индуктивного эффекта метильной групны. Кроме того, если бы полоса 1495 см-1 относилась к колебанию СН2, как это предполагается в работе (2), она должна была бы исчезать в спект-

рах (π-C₅H₉NiHal)₂, что на самом деле не наблюдается.

В области длинных волн (400-50 см⁻¹) колебательные спектры аллильных соединений никеля ранее не были изучены. Если полагать, что л-аллилникельбромид имеет плоско-мостичную конфигурацию, подобную структуре л-аллилиалладийбромида, то в этой области спектра должны проявляться два колебания Ni — С и одно колебание мостичной связи Ni—Hal, активные в и.-к. спектре. Самые интенсивные полосы, чувствительные к изменению природы галлоида, были отнесены к колебаниям Ni—Hal. Полоса поглощения колебания Ni — Cl в спектрах (л-C₄H₇NiCl)₂ и (л-C₅H₉NiCl)₂ лежит при 275—280 см⁻¹, Ni — Вг в спектре (π-С₃H₅NiBr)₂ при 200 см⁻¹ и Ni—J в спектре (π-С₅H₉NiJ)₂ при 160 см⁻¹. В спектрах всех изученных нами аллильных соединений никеля имеется широкая полоса в области 380 см-1, с плечом при 360 см-1, которую мы отнесли к полносимметричному колебанию Ni — C. Вторая полоса, относящаяся к антисимметричным колебаниям этой связи, лежит в области 420-450 см-1 и ее наблюдение затруднено, так как она находится на границе поглощения КВг. Как видно из рис. 1, полоса поглощения Ni — С для (π-C₅H₉NiJ)₂ больше других сдвинута в длинноводновую часть спектра по сравнению со спектрами других аллильных соединений никеля. Это может быть свидетельством меньшей прочности связи в соединении, однако вопрос о прочности связи Ni-C в сосдинениях такого типа требует дополнительного изучепия.

В спектре л-аллилникельбромида, кроме уже описанных полос, в длинноволновой области есть три малоиптенсивные полосы 270, 224 и 150 см-1, а в спектре л-пентенилникельхлорида — четыре полосы средней интенсивности 300, 220, 180 и 145 см-1. Возможно, что усложнение спектра в этих соединениях связано с неплоской конфигурацией галлондного мостика. В этом случае в результате понижения симметрии в и.-к. спектре становятся активными три частоты колебания связи Ni-Hal (2). Для л-пентецилпалладийхлорида известно по результатам рептгеноструктурного анализа (11), что хлорный мостик имеет угол 150° между двумя коордипатными илоскостями Pd — Cl. Для л-аллилникельнодида вряд ли можно ожидать существование неплоского галлоидного мостика из-за большого ионного радиуса пода. Действительно, в и.-к. спектре (л-C₅H₉NiJ)₂ проявляется лишь одна полоса в области 160 см⁻¹, отнесенная к колебанию Ni — J. Малоинтенсивные полосы поглощения, лежащие в области до 120 см-1, вероят-

но, связаны с колебаниями кристаллической решетки.

Таким образом, изучение и.-к. спектров л-аллильных соединский никеля позволило сделать отнесение колебательных частот, активных в и.-к. спектре, которое в основном совпадает с отнесением колебаний в аналогичных по структуре соединениях палладия.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва

Поступило 8 I 1973

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ M. S. Lupin, J. Powel, B. L. Shaw, J. Chem. Soc. A, 1966, 1410. ² D. M. Adams, A. Squire, J. Chem. Soc. A, 1970, 1808. ³ Kosuke Shobataka, Kazuo Nakamoto, J. Am. Chem. Soc., 92, № 11, 3339 (1970). ⁴ R. Bürger, Thesis Univ. München, May. 1962. ⁵ E. O. Fischer, G. Bürger, Zs. Natürforsch., 16B, 77 (1961). ⁵ E. O. Fischer, G. Bürger, Chem. Ber., 94, 2409 (1964). ¬ A. Г. Азизов, О. К. Шараев и др., ДАН, 197, № 5, 1077 (1971). ⁵ Will E. Oberhansli, Lawrence F. Dahl. J. Organomet. Chem., 3, № 1, 43 (1965). ⁵ H. P. Fritz, Chem. Ber., 94, 1217 (1961). ¹0 G. Davidson, D. C. Andrews, J. Chem. Soc., Delton Trans., 1, 126 (1972). ¹¹ G. R. Davies, R. H. B. Mais et al., Chem. Commun., 22, 1451 (1967) 1151 (1967).