УДК 519.241.5:518.62:541.18.041.8:576.11

БИОХИМИЯ

К. Л. ГЛАДИЛИН, А. Ф. ОРЛОВСКИЙ

МЕТОД ПОДБОРА АППРОКСИМИРУЮЩИХ ФУНКЦИЙ

(Представлено академиком А. И. Опариным 10 І 1973)

Прп анализе результатов биологических и биохимических исследовапий целый ряд экспериментаторов стремится для большей определенности и законченности выводов представить рассматриваемую закономерность в виде эмппрических формул, а не только таблиц или графиков. Аппроксимирующие функции позволяют также привести заданную таблицей зависимость к виду, наиболее удобному для дальнейших математических расчетов, особенно если опи проводятся на ЭВМ.

В работах К. А. Семендяева (1) и А. К. Успенского (2) намечен удач-

ный подход к выбору вида аппроксимирующих функций.

Целью дапной работы является разработка указанного подхода и использование его для упрощения расчетов при обработке экспериментальных данных для определения средних размеров и числа капель в коаперватных системах спектрофотометрическим методом.

Выбор вида аппроксимирующей функции. Аппрокси-

мирующая функция представляет собой уравнение

$$y = f(x), \tag{1}$$

позволяющее представить в аналитическом виде зависимость, заданную в виде таблицы упорядоченных пар отношений $\langle x_i, y_i \rangle_{i \in I = \{1, 2, 3, ..., n\}}$:

$$x_1, x_2, x_3, \ldots, x_{n-1}, x_n,$$
 (2)

 $y_1, y_2, y_3, \ldots, y_{n-1}, y_n$

Для решения задачи в общем виде заменим уравнение (1) его линейным вариантом:

$$u = av + b, (3)$$

где u=u(y), а v=v(x). Тогда среднее арифметическое из крайних значений u должно быть липейной функцией от среднего арифметического из крайних значений v:

 $\bar{u} = a\bar{v} + b. \tag{4}$

Теперь задача сводится к отысканию вида зависимости u от y и v от x, удовлетворяющей требованию липейности (4). Для ее решения используем три типа средних величин: среднее арифметическое $\bar{z}_1 = (z_1 + z_n) / 2$; среднее геометрическое $\bar{z}_2 = \sqrt{z_1 z_n}$ и среднее гармоническое $\bar{z}_3 = 2z_1 z_n / (z_1 + z_n)$ или $(1/\bar{z}_3) = [(1/z_1) + (1/z_n)] / 2$, где вместо z могут быть подставлены соответствующие значения y или x. Порядок действий при отыскании вида зависимости следующий.

1. Вычисляют все три типа средних величин $(\bar{z}_1, \bar{z}_2, \bar{z}_3)$ для заданных

в таблице пар (2) крайних значений x (x_1 п x_n) и y (y_1 и y_n).

2. По данным таблицы пар (2) методом линейной интерполяции или по графику зависимости y от x, построенному на основании данных таблицы пар (2), находят заданные таблицей пар значения y для трех средних значений x $y(\bar{x}_1)$; $y(\bar{x}_2)$; $y(\bar{x}_3)$.

3. Сравнивают значения каждого из трех типов \bar{y} (см. пункт 1) с каждым из трех $y(\bar{x})$ (см. пункт 2). В результате получают 9 возможных пар

 $\overline{y}_i \leq y(\overline{x}_i)$. Тип среднего y и x в паре $\overline{y} \approx y(\overline{x})$, где равенство выполняется наиболее точно, определяет вид зависимости по правилу: среднее арифметическое дает замену u на y, а v на x; среднее геометрическое — на $\lg y$ и $\lg x$, а среднее гармоническое — на 1/y и 1/x соответственно, так как только при этом выполняется требование линейности уравнения (4). Так, например, если оказалось, что $\overline{y}_3 = y(\overline{x}_2)$, то уравнение (3) принимает вид $1/y = a \lg x + b$. Тогда $1/\overline{y}_3 = \left[(1/y_1) + (1/y_n) \right]/2 = (a \lg x_1 + b) + a \lg x_n + b)/2 = a \lg \sqrt[3]{x_1}x_n + b = a \lg \overline{x}_2 + b = y(\overline{x}_2)$, что и требовалось получить. Сущность метода может быть продемонстрирована графически (рпс. 1). На рис. 1A представлены 9 точек возможных пар соответствий

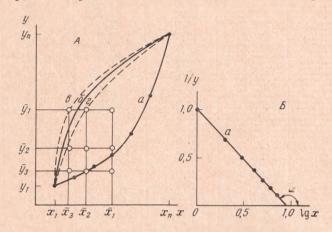


Рис. 1. Графическая иллюстрация сущности метода совпадения средних для выбора вида аппроксимирующей функции (пояснения в тексте)

средних величин для двух крайних: $y_1(x_1)$ и $y_n(x_n)$. Приведенному выше примеру зависимости соответствует график типа кривой a (рис. 1A), ли-

нейный вид которой представлен на рис. 1B ($a = tg \alpha$).

В тех случаях, когда значение \overline{y} лежит между двумя значениями $y(\overline{x})$ (рис. 1A, кривая 6), аппроксимирующую функцию выбираем в виде линейной комбинации двух функций, соответствующих примыкающим типам $y(\overline{x})$. Например, если \overline{y}_1 лежит между значениями $y(\overline{x}_2)$ и $y(\overline{x}_3)$, то левому типу зависимости (см. рис.1A, кривая e) соответствует формула y=a/x+d, а правому (кривая e) $y=b\lg x+e$. В результате линейной комбинации этих двух формул получаем $y=a/x+b\lg x+c$, где c=d+e.

Параметры данного уравнения, записанного в общем виде (u=c+av+bw) могут быть найдены методом наименьших квадратов через де-

терминанты «расширенной» (вырожденной) матрицы:

$$\begin{pmatrix} n & \Sigma v & \Sigma w & & \Sigma u \\ \Sigma v & \Sigma v^2 & \Sigma vw & & \Sigma uv \\ \Sigma w & \Sigma vw & \Sigma w^2 & & \Sigma uw \end{pmatrix},$$

миноры которой являются матрицами для соответствующих уравнений, по-

лучаемых из указанного вычеркиванием тех или иных членов.

Использование аппроксимирующих функций для интерполирования табулированных зависимостей. Аппроксимирующие функции удобны в тех случаях, когда аналитический вид зависимости сложен, что бывает существенно даже при машинной обработке экспериментальных данных. Так, разработанный выше метод был использован нами для упрощения расчетов средних размеров и числа капель в различных коацерватных системах в зависимости от концентрации

	$\lambda_1 = 1,0, \ \lambda_2 = 1,3 \ \mu$		$\lambda_1 = 0.7, \ \lambda_2 = 1.0 \ \mu$		$\lambda_1 = 0.4, \ \lambda_2 = 0.6 \ \mu$	
D_1/D_2	диаметр ка- пель, 10-4 см	число капель в 1 мл, 10°/(D ₁ + D ₂)	диаметр ка- пель, 10-4 мл	число капель В 1 мл, $10^6/(D_1+D_2)$;	диаметр на- пель, 10-4 см	число капель в 1 мл, 106/(D ₁ + D ₂)
1,10 1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 1,90 1,95 2,00 2,05 2,10 2,15 2,20	11,5 10,0 8,9 8,1 7,5 7,0 6,5 6,2 5,5 4,8 3,9 3,0 2,0 1,5 1,1 0,84 0,65 0,51 0,40 0,40 0,40 0,40 0,40 0,27 0,23 0,19	3,11 4,36 5,78 7,444 9,43 11,9 14,9 18,6 28,3 46,9 96,8 263 1,30.10 ³ 4,98.10 ³ 1,72.10 ⁴ 5,45.10 ⁴ 1,59.10 ⁵ 4,34.40 ⁶ 1,11.10 ³ 2,69.10 ³ 6,20.10 ⁶ 1,37.10 ⁷ 2,89.10 ⁷	8,2 7,4 6,9 6,4 6,0 5,7 5,4 5,1 4,9 4,7 4,5 4,3 3,6 3,2 2,8 2,8 2,4 2,0 1,5 1,25 1,04 0,87	6,15 7,78 9,55 11,5 13,6 16,0 18,7 21,8 25,3 29,4 33,9 42,5 57,5 79,1 113 192 349 703 2,14 10 ³ 4,92 10 ³ 1,08 10 ¹ 2,29 10 ⁴		

Примечание. Выделены величины, погрешность округления которых не превышает 5% для диаметра капель и 10% для числа капель. Относительный коэффициент преломления капель 1,05. Толщина кюветы по ходу луча 0,106 см.

исходных растворов и протекания ферментативных реакций (3). Исходными для расчетов величинами служили данные об оптических плотностях коацерватных систем, обусловленных светорассеянием при двух различных длинах воли: тех, при которых отсутствует поглошение света компонентами системы. Величина р, характеризующая степень светорассеяния в зависимости от длины волны света, определяется непосредственно из данных эксперимента по формуле $p = \lg(D_1/D_2)/\lg(\lambda_2/\lambda_1)$, где D_1 – оптическая плотность при длине волны λ_1 ; D_2 — при λ_2 . Величина p дает далее возможность определить относительную величину диаметра капель и длины волны падающего света $\alpha = \pi d / \lambda$ по соответствующим таблинам тогда $d = \alpha \lambda / \pi$, где d — диаметр капель.

Указанные таблицы (4) позволяют определять а до величины, равной 25, что для наших целей оказалось недостаточным. В связи с этим, по данным таблицы зависимости суммарного светорассеяния (по всем направлениям) для одной частицы $\Sigma(\alpha)$ (5), нами были подобраны аппроксимирующие функции, которые позволили при помощи ЦВМ «МИР-2» по соответствующей расчетной формуле (4) продолжить таблицу зависимости $\alpha(p)$ до значения, равного 41, что расширило возможности определения максимального среднего диаметра капель от 6,8 до 11,5 µ.

Результатом проведенной работы является табл. 1, позволяющая сократить время расчета в десятки раз, что как раз представляло собой основное препятствие для использования метода светорассеяния при определениях размеров и количества коацерватных капель, или бактерий в культуральной жидкости, или субклеточных структур (а также их фрагментов) в соответствующих суспензиях.

Данные, приведенные в табл. 1, показывают также влияние точности определения оптической плотности на точность конечных результатов. Эту

переменную величину приходилось особо учитывать, когда коацерватные системы образовывались из растворов с концентрацией выше оптимальной, так как при этом запись оптической плотности системы имеет ярко выраженный волнистый характер, что обусловлено пересеканием луча света крупными агрегатами капель и отдельными флокулятами (3). Этот стохастический фон может быть «отделен» от величины оптической плотности остальной системы при помощи математического метода, предложенного нами ранее (6), для чего на графике записи оптической плотности следует провести кривые, аппроксимирующие минимумы оптической плотности раздельно для каждой из двух длин волн: min D_1 и min D_2 соответственно (3). Величины, рассчитанные по этим минимальным значениям оптической плотности соответствуют системе с «удаленными» из нее (хотя бы частично) крупными агрегатами и флокулятами.

Полученные нами результаты (3) хорошо согласуются с данными, найденными при помощи анализатора биочастиц (7), что экспериментально подтверждает применимость предложенных нами методов, особенности и

преимущества которых описаны нами ранее (3).

Авторы сердечно благодарят акад. А. И. Опарина за постоянное внимание и Т. Н. Еврепнову за повседневную помощь в работе.

Институт биохимин им. А. Н. Баха Академии наук СССР Москва Поступило 15 XII 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ К. А. Семендяев, Эмпирические формулы, М., 1933. ² А. К. Успенский, Выбор вида и нахождение параметров эмпирической формулы, М., 1960. ³ К. Л. Гладилин, А. Ф. Орловский и др., ДАН, 206, № 4, 223 (1972). ⁴ W. Heller, H. L. Bhatnagar, M. Nakagaki, J. Chem. Phys., 36, 5, 1163 (1960). ⁵ W. J. Pangonis, W. Heller, A. Jacobson, Tables of Light Scattering Function for Spherical Particles, Detroit, 1957, pp. 113, 114, 117. ⁶ К. Л. Гладилин, ДАН, 203, № 1, 226 (1972). ⁷ Т. Н. Евреинова, Л. М. Галимова, В сборн. Машинный анализ микроскопических объектов, «Наука», 1968, стр. 82.