УДК 577.157.2

МИКРОБИОЛОГИЯ

Н. С. ЕГОРОВ, В. П. УШАКОВА

ОБРАЗОВАНИЕ НЕПАТОГЕННЫМИ ПЛЕСНЕВЫМИ ГРИБАМИ РОДА ASPERGILLUS КОАГУЛАЗ, СВЕРТЫВАЮЩИХ ПЛАЗМУ И КРОВЬ ЧЕЛОВЕКА

(Представлено академиком С. Е. Севериным 5 І 1973)

В настоящее время хорошо известно, что протеазы многих микроорганизмов, подобно протеолитическому ферменту крови фибринолизину, обладают способностью лизировать фибрин, проявляя в ряде случаев высокую тромболитическую активность in vitro и in vivo (1-5).

Большой научный и практический интерес представляют также работы по направленному поиску ферментов микробного происхождения противоположного фибринолизину действия, т. е. ферментов, обладающих свойством коагулировать плазму и кровь человека путем воздействия на факторы свертывания крови аналогично тромбину или тромбопластину.

Как установлено, конверсия протромбина, при которой образуется тромбин, и превращение фибриногена в фибрин с участием тромбина, имеющие место в процессе нормального свертывания крови, представляют собой явления ограниченного протеолиза $\binom{6}{7}$.

Актуальность исследований по изучению способности микроорганизмов различных систематических групп образовывать коагулазы, сверты-

вающие кровь человека и животных, не вызывает сомнений.

В литературе достаточно широко обсуждаются сведения по коагулазам стафилококков, дифтерийных и коклюшных палочек, синегнойных и чумных бактерий (⁸⁻¹⁰). При этом, учитывая способность патогенных микроорганизмов к образованию веществ, свертывающих плазму и кровь, делаются попытки найти корреляцию между этиологией и патогенезом, с одной стороны, и способностью к выработке коагулаз, с другой.

Целью настоящей работы явилось определение коагулазной активности в отношении плазмы и крови человека у различных видов непато-

генных грибов рода Aspergillus.

Обнаружение свертывающих агентов среди продуктов жизнедеятельности непатогенных микроорганизмов открывает новые возможности использования физиологически активных веществ микробного происхождения в качестве гемостатических веществ.

В качестве объектов исследования были взяты 22 культуры плесневых грибов, относящихся к 21 виду рода Aspergillus. Изучаемые грибы культивировали поверхностным методом на сусле 6° Бал. и на синтетической среде Стефанини (%): глюкоза 0.36; сахароза 0.72; MgSO₄ 0.123; KH₂PO₄ 1.362; KNO₃ 0.2; pH 6.8-7.0. Среды разливали по 20 мл в конические

колбы на 50 мл. Время инкубации 7 суток при 28°.

Коагулазную активность культуральной жидкости определяли по времени свертывания цитратной плазмы человека, взятой без разведения и при разведении 1:2 и 1:5. В пробирки с 0,5 мл плазмы добавляли 0,1 мл культуральной жидкости (рН 7,0), после чего их помещали в термостат на 37°. Образцы перподически в течение первых 6 час., а затем через 24 часа просматривали с целью обнаружения образования тромбов. Те образцы, которые к концу 24 часа показывали отрицательную реакцию, исследовались на содержание способного к свертыванию фибриногена путем добавления тромбина. Это необходимо делать для того, чтобы избежать оши-

Культура гриба	Среда	рН	Вес пленки гриба, мг	Протеолитическая активность, ед/мл		Время свертывания плазмы, часы		
				фибрино- литиче- ская	казеино- литиче- ская	развец. 1:5	развед. 1:2	без раз- ведения
Asp. alliaceus Asp. oryaae MTV Asp. sclerotiorum Asp. species № 1 Asp. species № 2 Asp. tamarii Asp. terricola Asp. amsterodami Asp. flavipes Asp. lutescens Asp. regulosus Asp. terreus Asp. sulfureus	1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	5,5 6,1 6,7 5,0 4,9 6,4 4,7 6,6 6,4 4,3 5,2	334 99 271 170 284 317 38 83 80 75 299 229 199	560 783 333 Следы 3020 348 606 0 0 0 752 420 333	9,3 1,4 15,5 0 18,6 3,1 0 1,5 0,9 1,9 6,2 13,9 7,7	4 Her cb.* 2 Her cb.* 6-24 Her cb.* 4 2 4 6-24 2	6-24	6-24 6-24 6-24 4 4 6-24 6-24 Her cb. ***

^{*} При добавлении тромбина также не происходит образования тромба.

бочных, отрицательных результатов, обусловленных активностью протеолитических (фибриполитических) ферментов. Реакция сопровождалась контролем на способность к спонтанному свертыванию плазмы.

Определение коагулазной активности в неочищенных препаратах, полученных из культуральной жидкости некоторых грибов путем высалива-

Таблица 2 Время свертывания плазмы и крови человека препаратами коагулаз, выделенными из культуральной жидкости Asp. sclerotiorum и Asp. species № 1

Количество пре- парата, вызываю- шее образование тромба, µг	Плазма	Кровь		
500	40 м. 10 м.	28 м. 10 м.		
250	1 ч. 25 м. 40 м.	40 м. 20 м.		
125	2 ч. 35 м. 1 ч. 15 м.	1 ч. 25 м. 40 м.		
63	3 ч. 30 м. 1 ч. 55 м.	<u>1 ч. 25 м.</u> <u>1 ч. 15 м.</u>		
31	<u>—</u> 4 ч. 50 м.	2 ч. 30 м. 3 ч. 25 м.		

Примечание. Цифры над чертой— данные для Asp. sclerotiorum, цифры под чертой— для Asp. species № 1.

ния сернокислым аммонием с последующим диализом и лиофилизацией, проводили по описанной выше методике, добавляя к субстрату 0,1 мл раствора препарата коагулазы различной конпентрации.

Биомассу аспергиллов учитывали путем взвешивания всей пленки гриба после доведения ее до постоянного веса.

Одновременно с коагулазной оценкой изучаемых грибов проводили также определение протеолитической активности культуральной жидкости. При фибринолитическую активность определяли по величине зон лизиса стандартных фибриновых пластинок. Условной фибринолитической единицей считали такое количество фермента, которое в течение 6 час. вызывало лизис фибрина в зоне, площадь которой равна 10 мм². Определение казеинолитической активности проводили спектрофотометрически по нарастанию свободного тирозина в 4% растворе казеина при рН 7,4.

Результаты определений коагулазной активности культуральной жидкости изучаемых грибов показали (табл. 1), что из всех обследованных нами аспергиллов 13 культур плесеней (около 59%) обладают способностью свертывать человеческую плазму, взятую при разведении 1:5 или 1:2. При этом только 7 культур грибов или 32% имеют свойство коагулировать плазму без разведения, т.е., очевидно, коагулазы различных

аспергиллов неодинаково чувствительны к ингибиторам плазмы.

Из полученных результатов следует также, что способность к образованию коагулаз у изучаемых видов грибов различна. При этом у одних аспергиллов для этой цели наиболее благоприятна среда с суслом, для других — синтетическая среда. У некоторых грибов, активных по коагулазе, например у Asp. species № 1, не обнаружено корреляции между величиной протеолитической (фибринолитической и казеинолитической) активности и способностью к свертыванию плазмы, хотя у других изученных грибов такая связь, очевидно, существует.

Высокое образование фибринолитических ферментов, обнаруженное нами у большинства из обследованных грибов, затрудняет в ряде случаев выявление коагулазиой активности вследствие лизиса способного к свер-

тыванию фибриногена плазмы.

Далее из культуральной жидкости Asp. sclerotiorum и Asp. species № 1 были получены препараты свертывающих агентов, которые были проверены па способность коагулировать неразведенную плазму и свежую цитратную кровь человека (табл. 2). Как видно из представленных данных, препараты коагулаз Asp. sclerotiorum и Asp. species № 1 вызывают свертывание плазмы и крови человека, при этом кровь свертывается почти со всеми взятыми навесками препаратов в два раза быстрее, чем плазма. Коагулазная активность неочищенного препарата, выделенного из культуральной жидкости Asp. species № 1, значительно выше активности препарата Asp. sclerotiorum. Видно также, что время появления тромба зависит в указанных пределах от концентрации препарата коагулазы.

Московский государственный университет им. М. В. Ломоносова

Поступило 29 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. М. Магіп, М. Stefanini et al., J. Zab. and Clin. Med., 58, 1, 41 (1961). ² М. Кагаса, М. Stefanini, R. Mele, J. Zab. and Clin. Med., 59, 5, 799 (1962). ³ Н. С. Егоров, В. И. Ушакова, Прикл. биохим. и микробиол. 2, 595 (1966). ⁴ Н. А. Андреева, В. И. Ушакова, Н. С. Егоров, Микробиология, 44, 417 (1972). ⁵ А. А. Имшенецкий, С. З. Бродская, Микробиология, 38, 1043 (1969). ⁶ Б. А. Кудряшов, Проблемы свертывания крови и тромбообразования, М., 1960. ⁷ Г. В. Андреенко, Фибринолиз. Химпя и физиология процесса, М., 1967. ⁸ Е. D. Вееsley, R. R. Вгивакегеt al., J. Bacteriol., 94, 19 (1967). ⁹ G. Тогоwski, Folia Med. Cracow, 10, 161 (1968). ¹⁰ И. В. Домарадский, Г. А. Яромики др., Бюлл. эксп. биол. и мед., № 7, 79 (1963).