Доклады Академии наук СССР 1973. Том 211, № 4

УДК 549.643.25: 552.121: 553.21

МИНЕРАЛОГИЯ

С. А. ЩЕКА, Ж. А. ЩЕКА

НОВАЯ НАХОДКА ХРОМИСТОГО АМФИБОЛА

(Представлено академиком Д. С. Коржинским 15 V 1972)

Все находки хромистых (более 1 вес. % $\rm Cr_2O_3$) амфиболов ($^{1-4}$) относятся к хромитовым рудам, метаморфизованным или в условиях гранулитовой фации (4), или при образовании своеобразных близповерхностных гипербазитовых скарнов с уваровитом ($^{1-3}$), т. е. при различных температурах.

Авторами хромистый амфибол обнаружен в гипербазитовых «включениях» в эффузивах вулкана Авачи. Ранее (5) было показано, что эти включения являются обломками залегающих па глубине серпентинизированных гипербазитовых интрузивов, испытавшими перекристаллиза-

цию в андезито-базальтовой магме.

Среди ксенолитов преобладают диопсидовые гарцбургиты и лерцолиты (70-80%), дуниты, верлиты, оливиновые клинопироксениты (10-15%), амфиболовые габбро и долериты (около 5%), единичны тра-

хитоидные габбро-нориты и анортит-магнетитовые анортозиты.

По петрографическим особенностям лерцолиты ксенолитов неотличимы от интрузивных аналогов: в оливиновом агрегате зерна и гнезда хромшпинели окружены энстатитом и диопсидом. В редких случаях по межзерновым промежуткам развивается буроватый паргасит. В отличие от подобных интрузивных пород в ксенолитах среднезернистый оливиновый агрегат иногда включает участки и прожилки тонкозернистого более магнезиального (табл. 1) оливина, являвшиеся, видимо, зонками серпентинизации.

Лерцолиты в обломках часто пересечены прожилками пироксенов-энстатита с хромитом, диопсида, иногда мощными (10—12 см) метасоматическими жилами пегматоидного энстатита с гнездами хромита, замещающимися в ядре или участками пегматоидным диопсидом. В одной из жил

обнаружен хромистый амфибол.

Железистость минералов как лерцолитов, так и жил пироксенитов близка (табл. 1): оливин 9—10, энстатит 8,8—10, диопсид 7,2—9,2, хромит 40,5—41,9. Несколько пониженная железистость и повышенная хромистость пироксенов и хромита отличает породу с хромистым амфиболом (табл. 2), хотя содержание хрома в пироксенах в этом случае ниже.

Ксенолит с хромистым амфиболом является фрагментом жилы пегматоидного (размер зерен до 16 мм) энстатита с гнездами хромита (2—6 мм) и диопсида (до 10 мм). Диопсид развивается по гиперстену и хромиту, амфибол выполняет интерстиции в ппроксенах, частично замещая все три минерала. В межзерновых промежутках выделяется бурое стекло с рудной пылью, по составу (N-1555) отвечающее вмещающему андезито-базальту.

Зерна амфибола ксеноморфны к пироксенам и невелики по размерам (0,2-5 мм). Они обладают своеобразным плеохроизмом $(N_g$ травяно-зеленый, N_m — светлый травяно-зеленый, N_p — бледно-зеленый), отличающим их от титанисто-железистых разновидностей. По оптическим свойствам (рис. 1) изученный амфибол, как и другие (1-4) хромистые разновидности, специфичен. Несмотря на высокую магнезиальность, все хромистые амфиболы имеют повышенный показатель преломления, и лишь с ростом железистости, когда снижается хромистость (как будет показано ниже), они сближаются с паргаситами. Следовательно, расхождение кривых на графике $f_{\text{общ}} - N_g$ в магнезиальном конце определяется содержанием хрома,

Состав и оптические свойства минералов ксеполита лерцолита

	Оливин		Энстантит		Диопсид		Хромит	
	вес. %	колич. катионов на 40	вес. %	колич. катионов на 30	Bec. %	колич. катионов на 60	вес. %	колич. катионов на 40
$\begin{array}{c} {\rm SiO_2} \\ {\rm JiO_2} \\ {\rm Al_2O_3} \\ {\rm Cr_2O_3} \\ {\rm Fe_2O_3} \\ {\rm FeO} \\ {\rm MnO} \\ {\rm MgO} \\ {\rm CaO} \\ {\rm Na_2O} \\ {\rm K_2O} \\ {\rm H_2O^+} \end{array}$	40,80 0,03 0,70 He onp. 0,25 8,00 0,20 49,20 0,20 0,10 0,09 0,35	0,998 0,021 0,004 0,163 0,004 1,794 0,006	54,08 C.H. 1,65 0,50 0,57 5,52 0,09 35,00 1,76 0,20 0,04	0,941 0,044 0,007 0,007 0,081 0,001 0,913 0,033 0,033 0,006	51,32 Сл. 2,10 0,88 0,07 2,76 0,05 20,55 20,70 0,25 0,02 0,80	1,847 0,148 0,027 0,002 0,086 1,128 0,818 0,018	Сл. 0,08 20,88 46,00 5,08 13,08 0,09 14,68 Сл. Не опр. » »	0,002 0,756 1,417 0,118 0,336 0,002 0,672
Σ	99,77		99,41		99,50		99,89	
$f_{00\text{MM}}$, ат, % ϕ , ат. % N_g N_p $2V$, град. CN_g , град.	8,5 		8,8 13,7 1,676 1,664 84 0		7,2 15,4 1,697 1,669 58 42		40,4 59,7	

Примечание. Обр. № 0—1091/8. Крупные золотистые зерна оливина имеют более высокие значения оптических констант, чем мелкие белые. Состав породы (об. %): оливин 83,9, энстатит 10,4, диопсид 5,1, хромит 0,6, паргасит ($N_g=1,659,\ N_p=1,635,\ 2V=85^\circ,\ CN_g=22^\circ)$ —ед. зерна. Здесь и далее: $f_{\rm oбщ}={\rm Fe/(Fe+Mg)},\ \varphi={\rm Cr(Cr+Al)}.$ Аналитик Ж. А. Щека.

заметно повышающего N_s . Угол 2 V испытывает тенденцию к снижению в положительную сторону, хотя это может быть вызвано не только ростом железистости, но и увеличением доли Al^{1v} .

Рассчитанные по порошкограмме параметры элементарной ячейки составляют: a=9,88, b=18,14, c=5,33Å, $\beta=73^{\circ}50'$. И.-к. спектр поглощения хромистого амфибола (UR-20, таблетка с KBr 1:300, поправки по кривым полистирола, толуола, пиридина) по набору частот максимумов полос поглощения (405: 467; 510; 546; 647; 666; 695; 756; 959; 995; 1060;

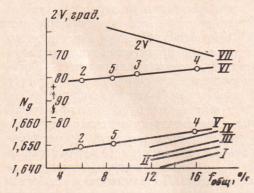


Рис. 1. График зависимости оптических свойств амфиболов от железистости. I-5 — разные образны: I — из (1), 2 — из (2), 3 — из (3), 4 — из (4), 5 — обр. № III—801 Г/2. I-V — разные группы амфиболов: I — из гранулитов по (6), II — из гранитов по (8), III — все роговые обманки, IV — паргаситы по (7), V — хромистые амфиболы и обыкновенные роговые обманки по В. Е. Трёгеру. VI-VII — хромистые амфиболы (VI) п паргаситы (VII)

1101; 3660 см^{-1}) подобен спектру актинолита, отличаясь от последнего более высокой интенсивностью поглощения в области $460-510 \text{ см}^{-1}$, чем в области $900-1100 \text{ см}^{-1}$. Возможно, это вызвано хромом, поскольку поглощение в области $460-510 \text{ см}^{-1}$ объясняет (9) связью Me-O, в области $900-1100 \text{ см}^{-1}$ — связью Si(Al)—O.

	Энстатит		Диопсид		Xpor	MUT	Амфибол				
	вес. %	колич. катионов на 30	вес. %	колич. катио- нов на 60	вес. %	колич. катионов на 40	вес. %	колич. катионов на 240			
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃ Fe ₂ O MnO NiO MgO CaO Na ₂ O K ₂ O H ₂ O ⁺ H ₂ O ⁻ F	57,15 0,03 1,54 0,42 0,05 5,10 0,13 He onp. 34,33 0,21 0,17 0,05 He onp. 0,40 He onp.	0,988 0,032 0,006 	54,17 Cл. 1,69 0,72 0,26 2,08 0,02 He onp. 20,91 19,67 0,30 0,03 He onp. He onp.	1,949 0,073 0,022 0,006 0,063 1,420 0,759 0,022	Сл. 10,76 58,56 18,66 0,02 He опр. 13,75 Сл. He опр. " " " " " " He опр.	0,410 1,497 0,093 0,338 — 0,662	48,28 0,44 10,33 1,79 0,06 3,35 0,006 0,14 20,83 10,98 1,75 0,19 1,58 0,12	6,801 0,042 1,710 0,199 0,008 0,398 0,008 0,017 4,367 1,651 0,473 0,034 1,488			
Σ	99,59		99,82		101,75 - 1,30Fe ²⁺ 100,45		99,85				
$f_{06\text{щ}}$, ат. % ϕ , ат. % N_g N_p $2V$, град. CN_g , град.	7,7 15,8 1,671 1,660 78		5,8 21,8 4,698 4,670 59 38		39,5 78,4		8,5 10,4 1,651 1,629 ±90 16—17				

Примечание. Обр. № Щ-801Г/2. Состав хромита рассчитан по группировкам R²+R³+2O4. В амфиболе количественным спектральным методом определены (%): V 0,0117; Sn 4-6·10-4, Sc 3-5·10-3, Zn 0,02; Co<0,001, Pb<6·10-4. Аналитики Ж. А. Щека и Л. И. Азарова (спектр).

Особенностями химического состава изученного амфибола являются повышенная (0,44 вес. % TiO₂) титанистость (и содержание ванадия) при высокой магнезиальности и хромистости и низкая степень окисления железа. Повышенные содержания характерны для изоморфных к магнию никеля и цинка, пониженные — марганца. Хром занимает около 25% октаэдрических позиций.

Выявляется ряд специфических особенностей состава хромистых амфиболов. Общая железистость колеблется от 5,8 до 15,9%, что приближает их к амфиболам в карбонатных скарнах. Доля кремнезема в тетраэдре составляет 6,4—6,9 форм. ед. Содержания хрома находятся в пределах 1,58—4,68 вес. %; он имеет октаэдрическую координацию, где составляет 15—62% и лишь при аномально высоких (4,68 вес. %) количествах входит в тетраэдр (16%). Все амфиболы характеризуются низким содержанием калия.

Из рис. 2 следует, что с возрастанием железистости падают хромистость, титанистость и доля тетраэдрического алюминия. Видимо, при железистости более 9% хром может входить лишь в состав высокоглиноземистых амфиболов. Рис. 3 показывает, что хром вытесняет алюминий в тетраэдрическое положение, чему, как известно (6), способствуют повышенные температуры; иными словами, хромистость амфиболов должна возрастать с ростом температуры и дефицита SiO_2 . На этом же графике (рис. 3) показано, что замещение $Si-Al^{1V}$ компенсируется изменениями в группе щелочей по схеме $Si^{4+} \rightarrow Al^{3+} + (Na, K)^+$, $2Si^{4+} \rightarrow 2Al^{3+} + Ca^{2+}$, или, в общем

случае, росту хромистости благоприятствует повышение щелочности. Следует отметить, что бескальциевые хромистые амфиболы неизвестны. По термометрам Л. Л. Перчука, исследованный амфибол кристаллизовался при температурах 1100—1050°. За исключением хромистого паргасита из гранулитов Мадраса (4), все хромистые амфиболы характеризуются невысоким содержанием А1^{1V} и всей октаэдрической группы, что, видимо, свидетельствует о небольших глубинах минералообразования. Низкая железистость исследованных амфиболов является индикатором повышения

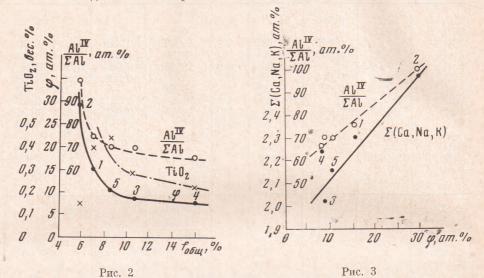


Рис. 2. График изменения составов хромистых амфиболов разной железистости. 1-5 — то же, что на рис. 1

Рис. 3. График изменения составов амфиболов разной хромистости. 1-5 — то же, что на рис. 1

потенциала кислорода, что также может быть связано с малой глубиной кристаллизации. А. Г. Бетехтин (10) отмечал, что уваровиты (с которыми чаще всего ассоциирует хромистый амфибол) образуются в миароловых пустотах в пегматитовую (флюидную) стадию. Высокая температура и небольшая глубина при кристаллизации амфибола в гипербазитовых ксенолитах Авачи позволяют предполагать, что он образовался в автометасоматическую стадию консолидации интрузива под влиянием флюида, сформировавшего диопсид-энстатитовые жилы.

Дальневосточный геологический институт Дальневосточного научного центра Академии наук СССР Владивосток Поступило 28 IV 1972

цитированная литература

¹ Е. Нагвісь, Zs. Kristallogr. Tschermak's Mineral. Mitt., 40 (1930). ² R. Nогіп, Geol. Fören. i. Stockholm. Forhand., 62, H. 1, 98 (1940). ³ В. П. Логинов, Н. В. Павлов, Г. А. Соколов, В сборн. Хромиты СССР, 2, Изд. АН СССР, 1940. ⁴ А. Р. Subrumanian, Bull. Geol. Soc. Ат., № 3 (1956). ⁵ С. А. Щека, В. Г. Сахно и др., В сборн. Вопр. геологии, геохимии и металлогении северо-западного сектора Тихоокеанского пояса, Владивосток, 1970. ⁶ Е. А. Костюк, Статистический анализ и парагенетические типы амфиболов метаморфических пород, «Наука», 1970. ⁷ У. А. Дир, Р. А. Хауи, Дж. Зусмаи, Породообразующие минералы, 2, 1968. ⁸ В. С. Соболев, Мин. сборн. Львовск. геол. общ., № 4 (1950). ⁹ А. И. Лазарев, Колебательные спектры и строение силикатов, «Наука», 1968. ¹⁰ А. Г. Бетехтин, В сборн. Академику Д. С. Беляпкину к 70-летию, Изд. АН СССР, 1946.