Доклады Академии наук СССР 1973. Том 210, № 3

УДК 552.43 + 549.621.9

МИНЕРАЛОГИЯ

А. И. БЕЛКОВСКИЙ

ИЗМЕНЕНИЕ СОСТАВА И СВОЙСТВ ВЫСОКОЖЕЛЕЗИСТЫХ АЛЬМАНДИНОВ В ЗОНАХ НИЗКОТЕМПЕРАТУРНОГО ЩЕЛОЧНО-КВАРЦЕВОГО МЕТАСОМАТОЗА

(Представлено академиком В. С. Соболевым 1 II 1972)

В метапелитовых обрамлениях гнейсо-мигматитовых комплексов процессы щелочно-кварцевого метасоматоза сопровождаются образованием вполне определенных минеральных ассоциаций, которые в зависимости от температуры, давления и активности щелочей подразделены на ряд фаций (¹, ²). Процессы фибролитизации, дистенизации, мусковитизации, парагонитизации и окварцевания проявлены в основном в условиях средних и низких температур, и общим для них является тенденция понижения температур метасоматоза, на различных стадиях которого состав породообразующих минералов изменяется вполне закономерно (2). Наиболее «чувствительными» к изменению термодинамической обстановки являются пироп-альмандиновые и альмандиновые гранаты, типоморфизм составов которых в породах различных фаций прогрессивного регионального метаморфизма исследован (4-11). Общие закономерности изменения состава и свойств гранатов, образующихся в метапелитах на различных стадиях регрессивного метаморфизма, установлены пока весьма неполно.

При изучении минеральных ассоциаций кристаллических сланцев, подвергшихся низкотемпературному щелочно-кварцевому метасоматозу, автором было установлено, что в условиях кварц-мусковитовой и кварц-альбит-мусковитовой фаций высокожелезистый альмандии становится неустойчивым и что в такой обстановке за счет замещения первичных магнезнально-железистых силикатов образуются вторичные гранаты резко отличного состава.

Объектом исследования явились породообразующие гранаты из метапелитов восточного обрамления Уфалейского гнейсо-мигматитового комилекса (Средний Урал). Кристаллические сланцы восточного обрамления, уровень метаморфизма которых в общих чертах соответствует амфиболитовой фации (12), в результате наложения регрессивных процессов претерпели повторный метаморфизм в условиях, переходных от эпидот-амфиболитовой к зеленосланцевой фации (3). Гранаты из прогрессивно метаморфизованных пелитов (углисто-биотито-гранато-кварцевых сланцев) по наиболее полной классификации, предложенной (9), относятся к высокожелезистым малокальциевым альмандинам.

Альмандин в сланцах встречен в виде крупных (до 2,5 см) порфиробластов, лишенных правильных кристаллографических ограничений (рис. 1a). В условиях кварц-мусковитовой и кварц-альбит-мусковитовой фаций щелочно-кварцевого метасоматоза порфиробластический альмандин подвергается рекристаллизации и замещается серицитоподобным мусковитом и кварцем (рис. $16-\partial$). В отдельных, наиболее переработанных участках будинированных иластов кристаллических сланцев состав образую-

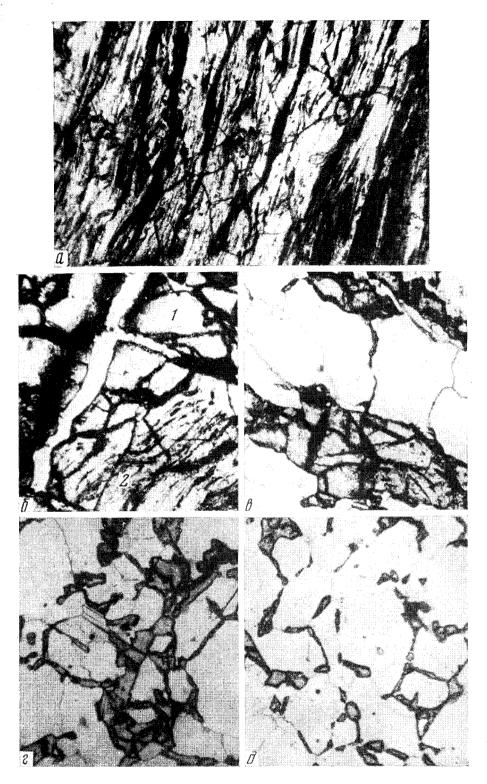


Рис. 1. Стадии замещения альмандина кварцем. Без анализа. $30 \times a$ — порфиробластический альмандин с субпараллельными полосками углистого вещества; b— образование рекристаллизованных кайм, лишенных вростков углистого вещества (1) вокруг «запыленного» ядра (2); b— характер замещения рекристаллизованного альмандина кварцем, периферическая часть порфиробласта; b, b— то же, внутренняя васть

щихся метасоматитов приближается к составу мономинеральных кварцевых пород, в которых в качестве характерного акцессорного минерала присутствует новообразованный гранат. Последний наблюдается в виде мелких (0,05—0,2 мм) идеально образованных ромбододекаэдрических кристаилов, в которых нередко наблюдаются каплевидные вростки кварца или же отдельные индивиды «фаршированы» кварцем. Поздний гранат в метасоматитах образует тонкие согласные, реже секущие цепочки и струи. Цвет его бледно-желтый или водяно-прозрачный. В последнем случае он совершенно не заметен на общем светлом фоне породы. По классификаци-

Таблица 1 Состав (вес.%) и физические свойства гранатов из метапелитов и кварцевых метасоматитов

Компоненты	1	2	3	4	5
SiO ₃ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO II .II .II .II	36,18 1,06 20,18 3,50 31,26 0,43 2,26 3,07 1,17	37,18 0,98 21,53 4,01 30,84 0,27 1,70 2,77 0,80	36,76 0,25 20,88 2,77 43,72 46,80 2,82 3,75	37,96 0,20 20,94 1,64 15,28 17,82 2,77 3,55	37,80 0,25 20,66 2,42 10,79 22,84 2,75 2,18
Сумма	99,75	100,08	99,75	99,76	99,69
Уд. вес Показлиреломл. а, А f, мол.% Нироп Альмандин Спессартии Гроссуляр Андрадит	4,04 1,806 11,525 89,5 88,6 10,12 72,92 1,08 9,98	4,04 1,806 11,525 91,9 91,0 8,01 81,85 0,82 9,32	4,04 1,785 11,585 76,3 73,2 12,37 33,84 41,91 11,83	4,09 1,785 11,592 77,2 75,6 11,59 35,64 42,19 5,54 5,04	4,06 1,780 11,612 72,5 68,7 11,77 25,91 55,59 6,73

Примечание. 1, 2— порфиробластический темно-фиолетовый малокальциевый альмандин из углисто-биотито-кварцевых сланцев (высокие содержания Ті и п.п.п. обусловлены присутствием включений тонконгольчатого рутила и хлопьевидных вростков углистого вещества); 3, 4— малокальциевый альмандин-спессартин из кварцевых метасоматитов. Химические анализы минералов выполнены в Центральной химической лаборатории Уральского территориального геологического управления.

онным параметрам поздний гранат относится к малокальциевым альмандин-спессартинам.

Изучение химического состава, физических свойств и генетической позиции породообразующих гранатов из прогрессивно метаморфизованных кристаллических сланцев и гранатов из кварцевых метасоматитов указывает на то, что в процессе низкотемпературного щелочно-кварцевого метасоматоза за счет первичных высокожелезистых альмандинов и ассоциирующих с ними магнезиально-железистых силикатов образуются гранаты, существенно обогащенные спессартиновым миналом (табл. 1). Условия образования поздних гранатов соответствуют P-T-условиям, переходным от эпидот-альбит-амфиболитовой к зеленосланцевой фации (13, 14). Нахождение спессартиновых гранатов в такой фациальной обстановке еще раз подтверждает известное положение об устойчивости высокомарганцовистых гранатов в породах, претерпевших метаморфизм в кварц-альбитмусковит-хлоритовой субфации зеленосланцевой фации прогрессивного ре-

гионального метаморфизма. По-видимому, сам тип метаморфизма, характеризуемый гранатами такого состава, следует называть альмандин-спессартиновым.

Уральское территориальное геологическое управление Свердловск Поступило 25 I 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. П. Кориковский, ДАН, 152, № 1 (1963). ² С. П. Кориковский, Метаморфизм, гранитизация и постмагматические процессы в докембрии Удокано-Становой зоны, М., 1967. ³ А. И. Белковский, А. Н. Айзикович, ДАН, 185, № 5 (1969). ⁴ V. М. Goldschmidt, Маt-пигу., № 10 (1921). ⁵ В. С. Соболев, Введение в минералогию силикатов, Львов, 1949. ⁶ Д. С. Коржинский, Зап. Всесоюзн. мин. общ., 65, № 2 (1936). ⁷ А. Міуаshіго, Geochim. et cosmochim. acta, 4 (1953). ⁸ А. Міуаshіго, J. Geol. Soc. Japan, 64, № 759 (1958). ⁹ Н. В. Соболев, Парагенетические типы гранатов, М., 1964. ¹⁰ А. Е. Епдеl, С. G. Епдеl, Bull. Geol. Soc. Am., 71, 1 (1960). ¹¹ М. П. Атертон, Сборн. Природа метаморфизма, М., 1967. ¹² Г. А. Кейльман, Сборн. Матер. совещ. по вопросам изучения и методики картирования докембрийских образований, Тр. Кольск. фил. АН СССР, Л., 1967. ¹³ А. W. Woodland, Geol. Мад., 75, 366 (1938). ¹⁴ Н. Л. Добрецов, В. В. Ревердаттои др., Фации метаморфизма, М., 1970.