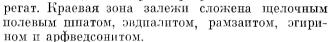
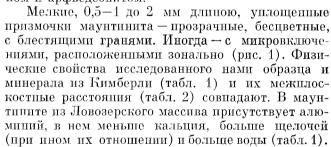
УДК 549.64 (470.21)

МИНЕРАЛОГИЯ

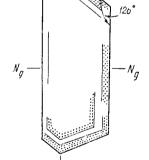

И. В. БУССЕН, Л. Г. ЛАТЫШЕВА, Ю. П. МЕНЬШИКОВ, А. Н. МЕРЬКОВ, Т. С. РОМАНОВА, А. С. САХАРОВ


МАУНТИНИТ — ПЕРВАЯ НАХОДКА В СОВЕТСКОМ СОЮЗЕ

(Представлено академиком Н. В. Беловым 24 III 1972)

Близкие по составу и свойствам минералы — родзит и маунтинит — открыты среди серпентина в кимберлитах Кимберли, Южная Африка (¹), и в иных местах не встречались. Нами маунтинит обпаружен в центральной натролитовой зопе пластовой пегматоидной залежи «Юбилейная», расположенной между луявритами (снизу) и фойяитами (сверху) третьей эруптивной фазы Ловозерского щелочного массива (²).

Рыхлые снежно-белые и голубоватые массы маунтипита выполняют пустоты в кавериозном патролите, содержащем зерпа степструпина, чкаловита, нептунита, сульфидов, пластинки серандита и почки волокнистого эгирина, лейкосфен, полилитиопит и галит. По трещинкам выделяется сода (термонатрит); насыщенный щелочной раствор пропитывает этот аг-



И. Д. Борнеман-Старынкевич (³) предложена иная, чем (¹), формула маунтинита. Расчет по (³) пашего анализа дал:

$$\begin{split} &(\text{Ca}_{3,18}\text{Mg}_{0,00}\text{Na}_{5,10}\text{K}_{1,66})_{9,94}(\text{Si}_{15,2}\text{Al}_{0,80})_{16,0}\cdot\\ \cdot &[\text{O}_{38,0}(\text{O}_{0,42}\text{OH}_{1,58})_{2,0}]_{40,0}\cdot 11\text{H}_2\text{O}^+\cdot 8,1 \text{ aq}; \ z=2;\\ &\rho_{\text{pentr}}=2,\!47; \end{split}$$

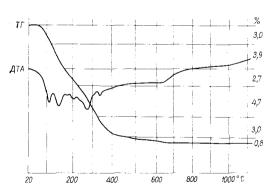
Э. А. Липатова, Всесоюзный научно-исследова-

 N_m

Рис. 1. Зональный кристалл маунтинита. $50 \times$

все потери при прокаливании приняты за воду. На и.-к. спектре поглощения (анализ

тельский геологический институт) отмечается резкий пик при частоте характеристических колебаний 1630 см⁻¹, широкая полоса поглощения в области у 3470—3560 см⁻¹ (максимумы при 3510—3550) и два острых пика при 3610—3630 см⁻¹. Последние максимумы отвечают гидроксильным групнам, два первых — воде, видимо имеющей разное положение в минерале. Данные термического исследования приведены на рис. 2. Вероятно, при 80° удаляется главная масса адсорбированной воды (потеря 3,7%); при 140° (потеря 8,8%) — вода цеолитная, при 240° (потеря 17,0%) — вода


	i .	· · · · · · · · · · · · · · · · · · ·		
	1	2	3	
SiO_{2} $Al_{2}O_{3}$ CaO MgO $Na_{2}O$ $K_{2}O$ $H_{2}O^{+}$ $H_{2}O^{-}$ CO_{2} $\PiH.$	51,57 (0,8582) 2,31 (0,0453) 10,07 (0,1795) Her 10,15 (0,3275) 4,43 (0,0940) 9,74 (1,0812) 8,02 (0,8902) 0,87 (0,0196) 2,47 *** (1,5241)	61,6 Her 45,1 Her 5,2 6,0 } 12,3	58,5 Her 13,4 0,2 7,9 6,0 13,4	
Σ	99,63	100,2	99,4	
$egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{a$	2,38 3 ± 1,513 1,505 1,500 0,013 +76 (выч.) Монокл. 13,6±0,1 13,2±0,1 13,6±0,1 13,6±0,1	2,36 — 1,515 1,505 1,502 0,013 — Ромбич. 23,8 6,54 7,05 90	2,36 3 1,519 1,510 1,504 0,015 Монокл. 13,51 13,10 13,51 104	

^{*} В скобках — атомное количество катионов.

конституционная. Природа эндотермических эффектов при 190 и 320° остается невыясненной.

Маунтинит плавится при 745°; при 850° — мутный, при 1000° — чистый расплав (определение Л. М. Делицина; п стекла 1,581).

Рис. 2. Термограмма (кривые ДТА и синхронная кривая ТГ) маунтинита. Выполнена в термической лаборатории Всесоюзного паучно-исследовательского геологического института. Прибор УТА-1, скорость пагрева 33 град/мин, инертное вещество — Al_2O_3 , терхромель-алюмелемопары вые; аналитик Б. К. Косатов

Маунтинит отпесен к цепочечным силикатам (4); по свойствам (малый удельный вес, цвет, характер воды — см. рис. 2) он близок к цеолитам, с которыми и ассоциирует. В обоих случаях он кристаллизовался на последних стадиях гидротермального процесса.

^{*} В скооках — атомное количество катнонов.

** I — маунгинит, Довозерский массив, коллекция И. В. Буссен, аналитик Т. С. Романова; 2 — родзит и 3 — маунгинит, Южная Африка, аналитик Р. А. Чазмерс (1). Оптаческие константы Довозерского образца определены В. В. Колесниковой. *** Вола?

Тајблица 2 Межилоскостные расстояния маунтинита*

№№ 11/11	1		2			
	I	d_{α} , Å	hkl	I	da, Å	
1 2 3	1 2	8,9 (7,4)				
4	2 9 3	$\begin{array}{c} 6,6 \\ 5,9 \end{array}$	201; 200; 020; 002 021; 120	9 3	$\substack{6,6\\5,9}$	
5 6	1p 2p	$\begin{bmatrix} 5,4\\ (5,1) \end{bmatrix}$	201; 202	3	5,4	
7 8	$\begin{array}{c} 6 \\ 0,5 \end{array}$	$4,67 \\ 4,36$	022; 221	8	4,67	
9 10	5 0,5	$\frac{4,14}{3,96}$	221; 222	6	4,18	
11 12 13	1 1 1	3,77 (3,64)	321 0,23; 320	4	$\frac{3,74}{3,66}$	
14	2	3,50 3,35	123 203; 20 4 ; 40 2	5	$3,36 \\ 3,30$	
15 16	7p 3	(3,27) $3,17$	400; 040; 004 323	4 5 3	3,28	
17	1 p	3,01	124	3	3,18 3,04	
18 19	10 ш.р.	2,951	240; 420; 024; 422; 224; 223	10	2,94	
20 21 22 23 24	1 4 о.ш.р. 0,5 0,5 3 3	2,862 2,793 2,723 2,681 2,631 2,580		7	2,80	
$\frac{25}{26} \\ 27$	3 1 1	2,515 2,441 2,382		4 3	$\substack{2,54\\2,42}$	
$\frac{28}{29}$	4 о.ш.р. 0,5	2,305 $2,209$		5	$^{2,32}_{2,23}$	
30 31 32	1 1 1	$ \begin{array}{c c} (2,159) \\ 2,110 \\ (2,071) \end{array} $		3	2,11	
33 34 35 36	0,5 4 ш.р. 2p	2,028 1,970 1,940 1,915		7	1,967	
37 38	1 4 0.5	1,883 1,849		3	1,882	
39 40 41	0,5 1 $0,5$ $0,5$	1,822 1,797 1,765		4	1,820	
$\begin{array}{c} 42 \\ 43 \end{array}$	$_{5}^{0,5}$	$egin{array}{c} 1,741 \ 1,722 \end{array}$		6	1,719	
44 45	0,5 } 1	1,698 1,683		3	1,678	
46 47 48	} 1	1,669 1,644 1,628		4	1,639	
49 50 51 **	$\begin{bmatrix} 0,5\\1\\0,5\end{bmatrix}$	(1,606) 1,585 1,569		3	1,578	

^{*} I — маунтинит, г. Карнасурт, коллекция авторов; 2 — маунтинит, Южная Африка (1). (

^{**} Далее до № 84 $(d_{\alpha}=1,009~{\rm \AA})$ і линии [совпадают, $D_{\rm K}=114,6$ мм, d=0,3 мм, исправлено по особому снимку с NaCl. Аналитик Л. Г. Латышева.

Продукты изменения маунтинита неизвестны.

Образцы маунтинита находятся в музее Кольского филиала АН СССР. Авторы выражают благодарность А. П. Недорезовой, Л. М. Делицину, Э. И. Макаровой и Э. А. Липатовой за помощь в работе.

Геологический институт Кольского филиала Академии паук СССР г. Апатиты Поступило 1 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. A. Gard, H. F. Taylor, Mineral. Mag. and J. Mineral. Soc., **31**, № 239, **611** (1957). ² И. В. Буссен, А. С. Сахаров, Геология Ловозерских тундр, Л., 1967. ² И. Д. Борнеман-Старынкевич, Зап. Минералогич. общ., **87**, № 4, 512 (1958). ⁴ Х. Штрунц, Минералогические таблицы, М., 1962.