УДК 550.388.2 Φ ИЗИКА

Е. Ф. ВЕРШИНИН, Ю. Н. ГОРШКОВ, Е. А. ПОНОМАРЕВ, В. Ю. ТРАХТЕНГЕРЦ, В. И. ШАПАЕВ

МЯГКОЭНЕРГИЧНЫЕ ЭЛЕКТРОНЫ В ИОНОСФЕРЕ КАК НОВЫЙ ИСТОЧНИК ЭЛЕКТРОМАГНИТНЫХ ВОЛН В О.Н.Ч. ДИАПАЗОНЕ *

(Представлено академиком Г. И. Марчуком 28 VI 1972)

Одним из источников потоков надтепловых электронов с энергиями $10 \leq W \leq 300$ эв являются электроны, возникающие в процессе фотоионизации на высотах $h_0 \approx 150-300$ км. Считая распределение их на высоте h_0 максвелловским по энергиям и квазиизотропным в верхней полусфере по питч-углам, находим распределение на высоте $h > h_0$ (пренебрегая соударениями фотоэлектронов с частицами ионосферной плазмы, при сохранении модуля скорости v^2 и магнитного момента μ)

$$f_{\Phi}(h, \mathbf{v}) = \frac{2N_{\Phi}}{(2\pi v_0^2)^{3/2}} \exp\left\{-\frac{v^2}{v_0^2}\right\} \cdot \mathbf{1}\left(\frac{v^2}{H_0} - \mu\right),\tag{1}$$

где

$$N_{\Phi} = \int f_{\Phi} d\mathbf{v}, \quad \mathbf{1}(\mathbf{x}) = \begin{cases} 1, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

Из (1) видно, что с увеличением высоты формируется хорошо выраженный пучок электронов, который может возбуждать электромагнитные и плазменные волны, в частности, очень низкочастотное (о.н.ч.) излучение.

Из общего дисперсионного уравнения (1), описывающего распространение волн при произвольном соотношении ω_{0e} и ω_{He} , с учетом движения ионов на электромагнитной ветви при $\beta_{Te} = \upsilon_{Te} / c \rightarrow 0$, будем иметь

$$n_{1,2}^2 = 1 + \frac{v_e}{2} \frac{a(1 + \cos^2 \alpha) + 2 - 2(u_e/(v_e - 1))\cos^2 \alpha \mp \sqrt{a^2 \sin^4 \alpha + 4u_e \cos^2 \alpha}}{u_e \cos^2 \alpha - 1 - a \sin^2 \alpha}, \quad (2)$$

где

$$a = u_e (1 - v_i)/(v_e + v_i - 1), \quad v_e = \omega_{0e}^2/\omega^2, \quad u_e = \omega_{He}^2/\omega^2.$$

Распространение плазменных волн описывается выражением

$$n_3^2 = \frac{-u_e \cos^2 \alpha + 1 + a \sin^2 \alpha}{R\beta_{Te}^2},$$
 (3)

где $R \approx \frac{3v_e}{v_e - 1} \Big[\cos^4 \alpha + \Big(\frac{m}{M}\Big)^2\Big] u_e$. Выражение (3) определяет высоко-

частотную плазменную волну

$$\omega^2 = \frac{1}{2} \left[\omega_{0e}^2 + \omega_{He}^2 + \sqrt{(\omega_{0e}^2 + \omega_{He}^2)^2 - 4\omega_{0e}^2 \omega_{He}^2 \cos^2 \alpha} \right]$$

^{*} Работа выполнена в Институте космофизических исследований и аэрономии Якутского филиала Сибирского отделения АН СССР, Сибирском институте земного магнетизма, ионосферы и распространения радиоволн Сибирского отделения АН СССР, Северо-Восточном комплексном научно-исследовательском институте Дальневосточного научного центра АН СССР и Горьковском научно-исследовательском радиофизическом институте.

$$\omega^2 = \frac{\omega_{He}^2 \cos^2 \alpha + \omega_{He} \omega_{Hi}}{1 + \omega_{He}^2 / \omega_{0e}^2},$$

которая при $\alpha = \pi/2$ совпадает с частотой плазменного нижнего гибридного резонанса (п.г.р.).

В области низких частот плазменные волны являются непрерывным продолжением ветви свистящих атмосфериков в область больших значений n^2 (2). Это обстоятельство является существенным для выхода излучения из области генерации и трансформации его в поперечные о.н.ч. волны. Мягкоэнергичные электроны, особенно за пределами плазмосферы, где $\omega_{0c} \lesssim \omega_{He}$, могут возбуждать волны лишь вблизи плазменных резонансов. С учетом этого выражение (2) упрощается:

$$n_2^2 \approx \frac{2v_e + \sin^2 \alpha \cdot u_e v_e / (v_e - 1)}{u_a \cos^2 \alpha - 1 - a \sin^2 \alpha}$$
 (2a)

В неоднородной магнитосферной плазме интенсивность возбуждаемых пучком воли в линейном приближении определяется усилением $\Gamma_j = \int_{\eta>0} \eta_j \, ds$, где η_j — коэффициент усиления j-й нормальной волны, а интегрирование ведется вдоль пути группового распространения по области неустойчивости $\eta>0$.

Для нахождения η_i воспользуемся известным выражением (3) (в случае слабых пучков $N_{\Gamma} \ll N_x$, N_{Γ} — плотность частиц в пучке):

$$\eta_{j} = \gamma_{j} \frac{\partial k}{\partial \omega}, \quad \gamma_{j} = \int_{-\infty}^{\infty} dp_{\parallel} \int_{0}^{\infty} p_{\perp} dp_{\perp} \cdot \Pi_{\alpha}^{j} \left\{ \frac{s\omega_{H\alpha}}{\omega} \frac{m_{\alpha}}{p_{\perp}} \frac{\partial f_{\alpha}}{\partial p_{\perp}} + \frac{k^{j}_{\parallel}}{\omega} \frac{\partial f_{\alpha}}{\partial p_{\parallel}} \right\}, \quad (4)$$

где
$$\Pi_{\alpha}^{j} = (2\pi)^{3} \frac{e^{2\omega}}{(1+\alpha_{x}^{2})\frac{\partial (\epsilon\omega^{2})}{\partial \omega}} \sum_{s=-\infty}^{\infty} \left\{ \left(\alpha_{x0} \frac{v_{\perp}s}{x} + \alpha_{z0}v_{z}\right) J_{s}(x) + v_{\perp}J_{s}^{'}\right\}^{2} \cdot \delta(\omega - \omega) \right\}$$

 $-k_{\parallel}v_{\parallel}-s\omega_{H\alpha}$); $\varepsilon\equiv n^2$ при $\beta_{Te}\to 0$, $\gamma-$ инкремент развития неустойчивости; $\alpha_{x0},\ \alpha_{z0}$ и α_x- векторы поляризации, которые вблизи резонансов принимают вид

$$\alpha_{z0} = rac{n^2 \sqrt{u_e} \sin lpha \cos lpha}{v_e - 1}, \quad \alpha_{x0} = \alpha_{z0} \operatorname{tg} lpha, \quad \alpha_x = \sqrt{u_e} \cos lpha.$$

Рассмотрим возбуждение воли в области Черенковского резонанса. Подставив (1), значения векторов поляризации и Π_{α}^{j} в (4), получим при $s=0,\,x=k_{\perp}v_{\perp}$ / $\omega_{He}\ll 1$:

$$\eta_{j} = 2 \sqrt{\frac{\pi}{2}} \,\omega_{\Gamma 0}^{2} \frac{\omega \sin^{2} \alpha \cdot \Phi(y)}{(v_{e} - 1)^{2} \cos^{3} \alpha \cdot v_{o} \beta_{0}^{2}} \frac{1}{1 + 1/(u_{e} \cos^{2} \alpha)}, \tag{5}$$

где

$$\Phi(y) = \exp\{-y\} \left[\exp\left\{-\frac{y}{H_v/H - 1}\right\} \frac{1}{1 - H/H_0} - 1 \right], \quad y = \frac{1}{\beta_{c}^2 n^2 \cos^2 \alpha}. \quad (6)$$

Учитывая, что

$$\frac{\partial k}{\partial \omega} = \frac{n^3 \left(u_e / v_e \right)}{c \left(2 + \sin^2 \alpha \cdot u_e / (v_e - 1) \right)} \left[-\cos^2 \alpha - \left(\frac{v_i}{v_e - 1} + \frac{1 - v_i}{(v_e - 1)^2} \right) \sin^2 \alpha \right], \quad (7)$$

найдем инкремент

$$\gamma = 2 \sqrt{\frac{\pi}{2}} \frac{N_{\Gamma}}{N_{K}} \frac{\Phi(y)}{y^{3/2}} \begin{cases} \omega_{He} \sin^{2} \alpha \cos \alpha, & \omega_{He} < \omega_{0e}, \\ \omega_{0e} \cos \alpha, & \omega_{He} > \omega_{0e}. \end{cases}$$
(8)

Выражение (8) справедливо для углов $|\alpha - \pi/2| > (m/M)^{\frac{\alpha}{2}}$: $\gamma_{\pi/2} \simeq (m/M)^{\frac{\alpha}{2}} \gamma_{\max}$ для $\alpha = \pi/2$.

Интегрируя (5) по s методом перевала (4), найдем Γ в двух важных предельных случаях. При $\delta\gg 1$ имеем

$$\Gamma = 2 \sqrt{\frac{\pi}{2}} \frac{N_{\Gamma}}{N_{x}} \frac{\omega_{He}}{v_{0}} \int \Phi(y) dy \cdot \begin{cases} L_{H} \sin^{2} \alpha, & \delta \gg L_{H}/L_{N}, \\ L_{N}\delta, & \delta \ll L_{H}/L_{N}. \end{cases}$$
(9)

Здесь

$$L_{H}^{-1} = \frac{1}{u_{e}} \frac{du_{e}}{ds}, \quad L_{N}^{-1} = \frac{1}{N_{x}} \frac{dN_{x}}{ds}, \quad \delta = \omega_{0e}^{2}/\omega_{He}^{2}.$$

Выражение (9) справедливо для углов $|\alpha - \pi/2| > (m/M)^{\frac{1}{2}}$, а для углов $|\alpha - \pi/2| < (m/M)^{\frac{1}{2}}$ его можно применять с заменой $\int \Phi(y) \, dy$ на $\sqrt{\frac{2}{\pi}} \int \Phi(y) \, y^{\frac{1}{2}} dy$.

При $\delta \ll 1$ получим

$$\Gamma = 2 \sqrt{\frac{\pi}{2}} \frac{N_{\Gamma}}{N_{x}} \frac{L_{N}}{v_{0}} \cdot \begin{cases} \omega_{0e} \int \Phi(y) \, dy, & |\alpha - \pi/2| > (m/M)^{1/2}, \\ \omega_{He} \int \Phi(y) \, y^{1/2} \, dy, & |\alpha - \pi/2| < (m/M)^{1/2}. \end{cases}$$
(10)

Таким образом, усиление Γ в случае $\delta \ll 1$ имеет резкий максимум при $\alpha \approx \pi/2$, относительная величина которого $\sim \delta^{-1/2}$. Пример зависимости Γ от $\alpha(\omega)$ для случаев $\delta = 0.1$ и 3 при $\omega_{He} = \text{const}$ представлен на рис. 1 $(L_N/L_H = 0.5)$.

Учет пространственной дисперсии приводит к возбуждению плазменных волн с показателем преломления (3). Найденные для этих типов всля выражения для инкремента и усиления с использованием соотношения (4) по существу совпадают с выражениями (8) и (9), (10), полученными вблизи резонансов при $\beta_{Te} \rightarrow 0$.

Пучки мягкоэнергичных частиц с распределением (1) могут возбуждать высокочастотные плазменные резонансы. Обобщая результаты работы (4) на случай $\delta \ll 1$, приведем выражение для усиления:

$$\Gamma_{\text{B.Ч.}} = \begin{cases} \sqrt{\frac{\pi}{2}} \frac{N_{\Gamma}}{N_{x}} \frac{L_{N}}{v_{0}} \omega_{H} \left(\frac{\omega_{0}}{\omega_{H}}\right)^{2} \cos \alpha \int \Phi(y) \, dy, & L_{N}^{-1} \gg \frac{\omega_{H}^{2}}{\omega_{0}^{2}} L_{H}^{-1}, \\ \sqrt{\frac{\pi}{2}} \frac{N_{\Gamma}}{N_{x}} \frac{L_{H}}{v_{0}} \omega_{0} \left(\frac{\dot{\omega}_{0}}{\omega_{H}}\right)^{2} \sin^{2} \alpha \cos \alpha \int \Phi(y) \, dy, & L_{N}^{-1} \ll \frac{\omega_{H}^{2}}{\omega_{0}^{2}} L_{H}^{-1}. \end{cases}$$

$$(11)$$

Для случая $\delta \gg 1$ выражение $\Gamma_{\text{в.ч}}$ имеется в работе (4).

Как следует из сравнения выражений (9), (10) и (11), внутри плазмосферы, где $\delta \gg 1$, должно наблюдаться либо преимущественное, либо одновременное с о.н.ч., возбуждение высокочастотного плазменного резонанса. В то же время за пределами плазмосферы, где $\delta \ll 1$, пучками надтепловых частиц будут в основном возбуждаться о.н.ч. шумы на частотах вблизи н.г.р.

Для определения экстремальных высот, где усиление максимально, запишем выражение для Γ в виде

$$\Gamma_{\max} \simeq \frac{N_{\Gamma} L_{N}}{v_{0}} \frac{\omega_{H}}{N_{x}} \left[\frac{H}{H_{0}} \left(1 - \frac{H}{H_{0}} \right)^{H_{0}/H - 1} - \exp \left\{ -y_{\min} \right\} + \exp \left\{ -\frac{y_{\min}}{1 - H/H_{0}} \right\} \right], (12)$$

где $H_{\scriptscriptstyle 0}$ — значение магнитного поля на высоте $h_{\scriptscriptstyle 0}.$

Появление y_{\min} связано с учетом затухания волн в ионосферной плазме. Затуханием можно пренебречь, если $\omega^2/k_{\parallel}^2\gg v_{Te}^2$ или $y\gg v_{Te}^2/v_0^2$. В соответствии с этим $0< y_{\min}\approx av_{Te}^2/v_0^2$, $a\approx 10$. Анализ выражения (12) показывает, что имеется довольно острый максимум Γ на ионосферных высотах. Положение его зависит от температуры ионосферных электронов. При $v_{Te}\to 0$ высота максимума h_m приближается к h_0 . Пример зависимости $\Gamma(h)$ при a=10, y=0.005 и 0.01 приведен на рис. 2.

В рамках линейной теории для объяснения наблюдаемых интенсивностей о.н.ч. излучения (5) необходимо усиление $\Gamma \simeq 10$. Учитывая это значение и формулу (12), нетрудно определить

$$S_{\rm KD} \approx \frac{\Gamma_{\rm KD} N_x}{L_N} v_0^2 \begin{cases} 3/\omega_H, & \delta < 1, \\ 1/\omega_0, & \delta > 1. \end{cases}$$
 (13)

Для типичных ионосферных условий и электронов с энергией ≈ 30 эв $S_{\rm кp} \simeq 5 \cdot 10^7 - 5 \cdot 10^8~{\rm cm^{-2} \cdot cek^{-1}}$. Согласно спутниковым наблюдениям, например (6), плотности потока фотоэлектронов $\approx 10^8~{\rm cm^{-2} \cdot cek^{-1}}$ довольно типичны на высотах $500-2000~{\rm km}$.

Оценка зависимости плотности критического потока электронов от средней энергии частиц в пучке приводит к заключению, что наиболее эффективными для возбуждения н.г.р. являются потоки надтепловых ча-

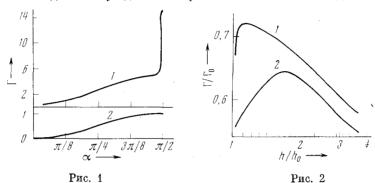


Рис. 1. Зависимость Γ от $\alpha(\omega)$: $1 - \delta = 0.1$; $2 - \delta = 3$

Рис. 2. Зависимость усиления от высоты для двух значений скорости $y=av_{Te}{}^2/v_o{}^2$ фотоэлектронов: $I-y=0{,}005;\; 2-y=0{,}01$

стиц с энергиями $W \approx 0.01-1$ кэв. Этими четицами могут быть фотоэлектроны или мягкие электроны авроральной зоны.

Рассмотрим кратко проблему выхода о.н.ч. шумов из области генерации в ионосфере. Плазменные волны, возбуждаемые вблизи н.г.р., находятся на одной дисперсионной ветви со свистящими атмосфериками и переходят в свистовую моду при распространении в неоднородной среде. Однако, как можно видеть из формул (5), (6), при этом они попадают в область затухания на тех же частицах пучка. Это позволяет объяснить локальность н.г.р. шумов, регистрируемых на спутниках.

Что касается выхода рассматриваемого излучения к земной поверхности, то здесь важную роль играет волновой канал $\bot \mathbf{H}_0$, обусловленный резким возрастанием показателя преломления при $\alpha \to \pi/2$. Важным для выхода н.г.р. шумов является и существование в ионосфере одного или двух минимумов н.г.р. частоты. В этих областях возможен захват о.н.ч. сигналов с большими углами волнового вектора \mathbf{k} к геомагнитному полю, пока вследствие рефракции не будут выполнены условия выхода излучения к земной поверхности вдоль поля \mathbf{H}_0 .

Поступило 21 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. Н. Гершман, В. Ю. Трахтенгерц, Геомагнетизм и аэрономия. 1. № 5, 671 (1961). ² М. С. Ковнер, В. Ю. Трахтенгерц, Геомагнетизм и аэрономия, 2, № 6, 1053 (1962). ³ В. Д. Шафранов, Вопросы теории плазмы, в. 3. 1963. ⁴ В. Ю. Трахтенгерц, Геомагнетизм и аэрономия, 7, № 606 (1967). ⁵ Е. Ф. Вершинип, Е. А. Пономарев, Сборн. Земной магнетизм, полярные спяния и ультранизкочастотное излучение, в. 1, 1966, стр. 35. ⁶ Ю. И. Гальперин, Т. М. Мулярчик, Космические исследования, 4, № 6, 932 (1966).