УДК 547.021:541.63

химия

А. С. ГУДКОВА, К. У. УТЕНИЯЗОВ, С. Г. ЗАВГОРОДНИЙ, академик О. А. РЕУТОВ

СИНТЕЗ И ДЕЗАМИНИРОВАНИЕ ГИДРОХЛОРИДОВ 1-ХЛОРМЕТИЛЦИКЛОГЕКСИЛАМИНА И 1-ХЛОР-1-АМИНОМЕТИЛЦИКЛОГЕКСАНА

Ранее было установлено (1), что дезаминирование азотистой кислотой некоторых 2-галогеналкиламинов-1 сопровождается нуклеофильной перегруппировкой с 1,2-миграцией галогена. Интересно было проследить влияние алициклического остатка на ход дезаминирования, так как появляется возможность протекания перегруппировки Демьянова. В качестве объектов исследования были избраны гидрохлориды 1-хлорметилциклогексил-

Таблица 1 Дезаминирование гидрохлоридов 1-хлорметилциклогексиламина и 1-хлор-1-аминометилциклогексана

1-amnomethiquesto encana			
Тип перегруппировки	Тип реакции	Продукты резкции	Выход, %
Гидрохло	рид 1-х	. лор метилциклогексила мин	a
Без перегруппировки 1,2-Миграция хлора и пе- регруппировка Де- мъянова	S _N E	1-Хлорметилциклогексанол 1-Хлор-1-хлорметилциклогексан 1-Хлорметилциклогексен Хлорметиленциклогексан 1-Циклогексенилкарбинол Циклогептанон 1,1-Дихлорциклогептан	58,0 11,0 15,5 15,5 Следы *
Гидрохлорі	ід 1-хл	ор - 1 - ами нометилциклогекс	ана
Перегруппировка Демья- нова] ''	Циклогептанон 1,1-Дихлорциклогептан 1-Хлорциклогептен	13,0 3,5 5,5 43,0
1,2-Миграция хлора Без перегруппировки	$E \\ S_N \\ E \\ S_N$	1-Хлорметилциклогексанол 1-Хлорметилциклогексан 1-Хлорметилциклогексан 1-Хлорметилциклогексан Хлорметиленциклогексан 1-Циклогексенилкарбинол 1-Хлор-1-оксиметилциклогексан	43,0 11,5 17,5 3,0 Следы Следы
200 may - 13 manhaam	Фрагмен- тация	Циклогексанон 1-Хлорциклогексен 1,1-Дихлорциклогексан	3,0 Следы »

амина и 1-хлор-1-аминометилциклогексана. Первый получен по ранее разработанному методу (2) из 1-азаспиро- (2,5)-октана, а второй синтезирован впервые восстановлением амида α -хлорциклогексанкарбоновой кислоты. Чистота полученных соединений контролировалась с помощью и.-к. и п.м.р. спектроскопии. Дезаминирование осуществлялось азотистой кислотой в среде разбавленной хлористоводородной кислоты при 50° . Качественный и количественный состав реакционных смесей, установленный методом г.ж.х., представлен в табл. 1.

Очевидно, что стабилизация хлорметилциклогексил-катиона практически полностью осуществляется путем взаимодействия с присутствующими

нуклеофилами и элиминирования протона, в то время как для 1-хлорциклогексилметил-катиона характерно превращение в более стабильные вторичные или третичные карбониевые поны (перегруппировка Демьянова или 1,2-миграция хлора соответственно). При анализе полученных данных можно отметить следующие особенности: характер процессов стабилизации в основном определяется термодинамической устойчивостью образующегося карбкатиона; при наличии конкурирующих процессов доминируют перегруппировки с 1,2-миграцией хлора по сравнению с процессами расширения цикла.

Ряд эталонов для анализа г.ж.х. был получен по известным методикам: 1-хлорциклогексен (3), 1,1-дихлорциклогентан и 1-хлорциклогентен (1), 1-хлор-1-хлорметилциклогексан (5) и 1-хлорметиленциклогексан (6). Остальные соединения синтезированы по видоизмененным методикам.

- 1-Хлорметилциклогексен. а) Этиловый эфир α -бромциклогексанкарбоновой кислоты получен из абс. этанола бромангидрида α -бромциклогексанкарбоновой кислоты (7). Выход 44 г (93%). Т. кип. $120-122^{\circ}/22$ мм; $n_D^{2i}/1,4828$. Лит. данные (8): т. кип. $111-115^{\circ}/1,4828$. Лит. $n_D^{2i}/1,4816$.
- б) Этиловый эфир циклогексен-1-карбоновой кислоты получен дегидрохлорированием этилового эфира α -бромциклогексан-карбоновой кислоты нагреванием с пиридином. Выход 73%. Т. кип. 105—106°/18 мм; n_D^{24} 1,4693. Лит. данные (°): т. кип. 109°/35 мм; n_D 1,4695; т. кип. 104—111°/25 мм (°).
- в) 1-оксиметилциклогексен получен восстановлением циклогексен-1-карбоновой кислоты литийалюминийгидридом в эфире. Выход 4,2 г (83%). Т. кип. 95—97°/20 мм; n_D^{25} 1,4845. Лит. данные (11): т. кип. 98°/27 мм; n_D^{25} 1,4905.
- г) 1-Хлорметилциклогексен получен взаимодействием 1-оксиметилциклогексена с n-толуолсульфохлоридом в диметилформамиде в присутствии симм.-коллидина и LiCl. Выход 30%. Т. кип. $74-79^{\circ}/32$ мм; $n_D^{2\circ}$ 1,4902. Лит. данные ($^{\circ}$): т. кип. $78^{\circ}/32$ мм; $n_D^{2\circ}$ 1,4912 и т. кип. $72-75^{\circ}/32$ мм; $n_D^{2\circ}$ 1,4893.
- 1-Хлорметилциклогексанол. а) 1-Окспциклогексилметилмеркурхлорид получен из метиленциклогексана и ацетата ртути в водном ацетоне с последующей обработкой реакционной смеси водным раствором NaCl. Т. пл. 406—407° (этилацетат). Выход 81%.

Найдено %: С 24,38; Н 3,84 С₇И₁₃OCHIg. Вычислено %: С 24,07; Н 3,84

- б) 4-Хлорметилциклогексан получен галодемеркурированием 1-оксициклогексилметилмеркурхлорида эквимолекулярным количеством хлора в абс. СС I_4 . Выход 1.5 г (40.5%). Т. кип. $85-90^\circ/14$ мм; т. пл. $70-72^\circ$ (пентап). Лит. данные $(^{12})$: т. пл. 72° .
- 1-Хлор-1-оксиметилциклогексан получен восстановлением хлорангидрида а-хлорциклогексанкарбоновой кислоты гидридом алюминия в эфире. Строение полученного соединения подтверждалось с помощью и.-к. спектров и спектров п.м.р.
- Гидрохлорид 1-хлор-1-аминометплциклогексана. а) Амид α -хлорциклогексанкарбоновой кислоты получен из хлорангидрида α -хлорциклогексанкарбоновой кислоты и конц. раствора аммиака (14). Выход 95%. Т. пл. 116—117°. Лит. данные (14): т. пл. 117—118° (водн. метанол).
- в) Γ идрохлорид 1-хлор-1-аминометилциклогексана получен восстановлением амида α -хлорциклогексанкарбоновой кислоты гидридом алюминия. Выход 75,5%. Т. пл. $234-236^\circ$ /разл. $172-173^\circ$.

Найдено %: С 45,66; Н 8,55; Сl 37,61 С₇Н₁₅NCl₂. Вычислено %: С 45,66; Н 8,23; Сl 38,51 Спектр и.м.р.: δ 1,30 (6H, мультиплет, H-цикла), δ 3,04 (2H квадруплет, CH₂N), δ 7,22 (3H, уширенный сигнал, $\stackrel{+}{\text{NH}}_3$). В и.-к. спектре отсутствуют полосы поглошения гидроксильной группы и кратных связей.

Дезаминирование гидрохлоридов 1-хлорметилциклогексапа. погексиламина и 1-хлор-1-аминометилциклогексапа. В двугорлую колбу на 50 мл, снабженную обратным холодильником, помещали 4,0 г гидрохлорида одного из указанных аминов и 7 мл дистиллированной воды. К раствору при 50° прибавляли 0,44 мл конц. HCl и 0,35 г интрита патрия. Через 3 часа продукты реакции экстрагировали 20 мл эфира, водный слой насыщали хлористым натрием и дважды экстрагировали по 20 мл эфира. Экстракты сущили над прокаленным сульфатом магния, упаривали по объема 1 мл и подвергали анализу г.ж.х.

Анализ г.ж.х. реакционных смесей осуществляли на хроматографе ЛХМ 8М. Детектор — иламенно-поцизационный. Размеры стеклянной колоцки 240×0.3 см. Носитель — целит (80-100 меш), жидкая фаза — ПЭГ 20000 (5%). Температура колопки 100° , давление азота 0.8 атм., скорость 45-50 мл/мин.

Московский государственный университет им. М. В. Ломоносова

Поступило 14 XI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

О. А. Реутов, А. С. Гудкова и др., Изв. АН СССР, сер. хим., 1968, 1222; ДАК, 194, 335 (1970): 203, 406, 354 (1972). ² О. А. Реутов, А. С. Гудкова и др., ДАН, 204, 1369 (1971). ³ А. Е. Favorsky, W. Boshowsky, Ann., 390, 122 (1912). ⁴ А. Е. Фаворский, Н. А. Домнин, ЖОХ, 6, 727 (1936). ⁵ В. Т. Аглогов, W. W. Lee, J. Am. Chem. Soc., 75, 5796 (1953). ⁶ А. Domow, А. Müller, Ber., 93, 41 (1960). ⁷ В. В. Wagner, J. А. Мооте, J. Am. Chem. Soc., 72, 974 (1950). ⁸ J. Jouquer, C. Weidmann-Hattier, A. Monquet, Bull. Soc. chim. France, 1958, 678. ⁹ Sukh Der, J. Ind. Chem. Soc., 33, 769 (1956). ¹⁰ В. Lithgoe, S. Trippett, J. C. Watkins, J. Chem. Soc., 1956, 4060. ¹¹ A. Dreiding, J. Hartnann, J. Am. Chem. Soc., 75, 939 (1953). ¹² C. Altona, H. Hageman, E. Haringa, Rec., 88, 43 (1969). ¹³ H. Wieland, S. Schapiro, H. Metzger, Ann., 513, 103 (1934). ¹⁴ Ch. Price, M. Schweircz, J. Am. Chem. Soc., 62, 2891 (1940).