УДК 513.88 + 517.948

MATEMATUKA

А. В. ШТРАУС

О РАСШИРЕНИЯХ ПОЛУОГРАНИЧЕННОГО ОПЕРАТОРА

(Представлено академиком И. Н. Векуа 20 XI 1972)

1. Пусть A — замкнутый симметрический несамосопряженный оператор в гильбертовом пространстве H. Его область определения $\mathfrak{D}(A)$, которую будем обозначать также через \mathfrak{D} , не предполагается плотной в H. Оператор A называется полуограниченным снизу (сверху), если квадратичная форма $\{Af, f\}$ ограничена снизу (сверху) на пересечении единичной сферы $S = \{f \in H : \|f\| = 1\}$ с \mathfrak{D} . Отметим, что неплотно заданный оператор, полуограниченный и снизу и сверху, может оказаться неограниченным; для плотно заданного оператора это невозможно.

Поясним некоторые обозначения. При любом комплексном λ $\mathfrak{M}_{\lambda} = (A - \lambda I)\mathfrak{D}$, $\mathfrak{N}_{\lambda} = H \ominus \overline{\mathfrak{M}}_{\lambda}$. Если оператор A полуограничен снизу, то через m(A) или m будет обозначаться его нижняя грань, т. е. нижняя грань квадратичной формы (Af, f) на множестве $S \cap \mathfrak{D}$. Аналогично через M(A) или M будет обозначаться верхняя грань оператора A, если он полуогра-

ничен сверху.

Лемма. Если оператор A полуограничен снизу (сверху), то при любом $\lambda < m \ (\lambda > M)$ $\mathfrak D$ и $\mathfrak R_\lambda$ линейно независимы, а их прямая сумма плотна в H.

Замечание. Для любого невещественного λ аналогичный факт имеет место без какого-либо предположения о полуограниченности оператора (1). Таким образом, заключение леммы верно для любого λ , не принадлежащего замыканию области значений квадратичной формы (Af, f) на множестве $S \cap \mathfrak{D}$, т. е. для любого λ из внешнего поля регулярности Π оператора A.

Принимая во внимание лемму и замечание, определим при любом

 $\lambda \in \Pi$ расширение A_{λ} оператора A следующим образом:

$$\mathfrak{D}(A_{\lambda}) = \mathfrak{D} + \mathfrak{N}_{\overline{\lambda}}, A_{\lambda}(f+\varphi) = Af + \lambda \varphi, f \in \mathfrak{D}, \varphi \in \mathfrak{N}_{\overline{\lambda}} \text{ (cp. (2))}.$$

Впрочем, в дальнейшем всюду, за исключением теоремы 4, оператор A_{λ} рассматривается лишь для вещественных $\lambda \in \Pi$.

Теорема 1. В условиях леммы при любом $\lambda < m$ ($\lambda > M$) оператор A_{λ} самосопряжен и приводится подпространством \mathfrak{M}_{λ} , а его часть A_{λ}' в \mathfrak{M}_{λ}

полуограничена снизу (сверху) и $m(A_{\lambda}') \geqslant m \ (M(A_{\lambda}') \leqslant M)$.

Следствие. Если оператор A полуограничен снизу, то при любом $\lambda < m$ он обладает полуограниченным снизу самосопряженным расширением A_{λ} с нижней гранью $m(A_{\lambda}) = \lambda *$.

2. В этом пункте рассмотрим случай ограниченного оператора.

Теорема 2. Если оператор A ограничен, то при любом $h < m \ (h > M)$ оператор A_h тоже ограничен и является наименьшим (наибольшим) элементом во множестве всех ограниченных самосопряженных расширений A оператора A_h , удовлетворяющих условию: $m(A) \ge h$ $(M(A) \le h)$.

Отсюда вытекает, в частности, следующее предложение.

^{*} Для случая плотно заданного оператора A это следствие совпадает с известной теоремой Неймана (3) (см., например, (4), стр. 377, 378). Отметим, что в указанном частном случае теорема 1 соприкасается с одним предложением из (5), [2.4].

Теорема 3. Если оператор A ограничен, то операторнозначная функция $\lambda | \to A_{\lambda}$ возрастает в каждом из промежутков $(-\infty, m)$ и $(M, +\infty)$.

При доказательстве следующей теоремы используются результаты ра-

бот (2, 6).

Теорема 4. Если оператор A ограничен, то операторнозначная функция $\lambda | \to A$, аналитична во внешнем поле регулярности оператора A, τ . е. во всей комплексной плоскости с разрезом вдоль отрезка [m,M] вещественной оси.

Теорема 5. Для того чтобы ограниченный оператор A обладал ограниченным самосопряженным расширением c той же нижней (верхней) гранью m (M), необходимо и достаточно, чтобы операторнозначная функция $\lambda | \to A_{\lambda}$ была ограничена сверху (снизу) в промежутке ($-\infty$, m) ((M, $+\infty$)). В этом случае оператор $A_{m\to 0}$ (A_{M+0}) является наименьшим (наибольшим) элементом во множестве таких расширений*.

Для заданного сегмента $[l, L] \supset [m, M]$ не всегда существует такое самосопряженное расширение $\widetilde{A} \supset A$, спектр которого содержится в [l, L]. Как легко видеть, необходимым условием существования такого расшире-

ния является выполнение неравенства

$$\left\|A - \frac{l+L}{2}I\right\| \leqslant \frac{L-l}{2}. \tag{1}$$

Из результатов М. Г. Крейна ($(^7)$, теоремы 1-3) следует, что условие (1) также достаточно и при его выполнении во множестве всех самосопряженных операторов $\widetilde{A} \supset A$ со спектром, содержащимся в [l, L], имеются наименьший и наибольший элементы. В (7) дана довольно сложная конструкция этих экстремальных расширений. Следующая теорема предлагает иной метод их построения.

Теорема 6. Если оператор A удовлетворяет условию (1), то A_{l-0} и A_{L+0} являются соответственно наименьшим и наибольшим элементами во множестве всех самосопряженных расширений оператора A, спектр кото-

рых содержится в [l, L].

Заметим, что в силу теоремы 4 при l < m $A_{l-0} = A_l$, а для L > M $A_{L+0} = A_L$.

Отметим еще, что в случае, когда $m \ge 0$ и l = 0, условие (1) равносильно следующему:

$$||Af||^2 \le L(Af, f)$$
 для любого $f \in \mathfrak{D}$.

3. Пусть теперь A — положительный оператор, который не предполагается ограниченным. Выясним, при каких условиях A обладает положительным самосопряженным расширением, и опишем совокупность таких расширений, если они существуют **. Как показано Стоуном (8) и Фридрихсом (9), обосновавшими предположение Неймана (3), для плотно заданного положительного оператора существует положительное самосопряженное расширение. Совокупность всех этих расширений описана М. Г. Крейном (7). В настоящей работе рассматривается оператор A, область определения которого необязательно плотна в H. Впрочем предлагаемый здесь подход позволяет также несколько дополнить известные результаты, относящиеся к случаю плотно заданного оператора.

При любом отрицательном $\lambda \neq -1$ положим $S_{\lambda} = (I + A_{\lambda})^{-1}$;

 S_{λ} есть ограниченное самосопряженное расширение оператора $B = (I + A)^{-1}$, причем

 $S_{\lambda} = B_{1/(1+\lambda)}$

в смысле обозначения, введенного в п. 1.

^{*} Односторонний предел A_{m-0} (A_{M+0}) существует в смысле сильной топологии ** К этому вопросу сводится и более общая задача, когда оператор A полуограничен снизу, $\gamma \leqslant_i m$, и требуется описать совокупность всех полуограниченных самосопряженных операторов $A \supset A$, для которых $m(A) \geqslant \gamma$. Достаточно ввести в рассмотрение положительный оператор $A - \gamma I$ и его положительные самосопряженные расширения.

Учитывая, что B удовлетворяет условию $\|Bf\|^2 \le (Bf, f)$, $f \in \mathfrak{D}(B)$, и применяя результаты п. 2 к оператору B, заключаем, что операторнозначная функция $\lambda \to S_{\lambda}$ убывает в каждом из промежутков $(-\infty, -1)$, (-1, 0) и обладает пределами $S_{-\infty} = B_{-0}$, $S_{-0} = B_{1+0}$, каждый из которых является ограниченным положительным самосопряженным расширением оператора B, не превосходящим 1 по норме, причем $S_{-\infty} \le S_{-0}$.

T е о р е м а 7. Для того чтобы положительный оператор A обладал положительным самосопряженным расширением, необходимо и достаточно, чтобы оператор S_{-0} имел обратный. B этом случае одним из положитель-

ных самосопряженных расширений является оператор

$$A_{-0} = S_{-0}^{-1} - I, (2)$$

а множество всех таких расширений состоит из всех самосопряженных операторов \widetilde{A} , удовлетворяющих условию

$$S_{-\infty} \leq (I + \widetilde{A})^{-1} \leq (I + A_{-0})^{-1} = S_{-0}.$$
 (3)

Замечание 1. Обозначение A_{-0} здесь оправдано, так как A_{-0} есть предел операторнозначной функции $\lambda|{\to}A_{\lambda}$ при $\lambda\to -0$ в следующем смысле:

$$(I + A_{-0})^{-1} = \lim_{\lambda \to -0} (I + A_{\lambda})^{-1}.$$

Замечание 2. Если оператор A ограничен, то возможны следующие случаи. 1) Оператор S_{-0}^{-1} существует и ограничен. Тогда в соответствии с теоремами 2 и 5 A_{-0} есть наименьшее ограниченное положительное самосопряженное расширение оператора A. 2) Оператор S_{-0}^{-1} существует и неограничен. Тогда A не имеет ограниченных положительных самосопряженных расширений, а оператор A_{-0} , определенный по формуле (2), является неограниченным положительным самосопряженным расширением оператора A, экстремальным в смысле неравенства (3). 3) S_{-0} не имеет обратного. Тогда у A нет положительных самосопряженных расширений.

Теорема 8. Ядро оператора $S_{-\infty}$ совпадает с $H \ominus \mathfrak{D}$.

Если оператор \hat{A} плотно задан, то оба оператора S_{-0} и $S_{-\infty}$ обладают обратными. Положим в этом случае

$$A_{-\infty} = S_{-\infty}^{-1} - I,$$

так что $S_{-\infty} = (I + A_{-\infty})^{-1}$ *. На основании теоремы 7 заключаем, что наряду с A_{-0} $A_{-\infty}$ является положительным самосопряженным расширением оператора A и тоже обладает экстремальным свойством, выраженным в виде неравенства (3). Из сопоставления этих фактов с результатами М. Г. Крейна (7) вытекает следующее предложение.

T е о р е м а 9. Eсли A — плотно заданный положительный оператор, то $A_{-\infty}$ есть жесткое, а A_{-0} — мягкое расширение оператора A в смысле

М. Г. Крейна **.

В заключение отметим, что к идее построения положительного самосопряженного расширения плотно заданного оператора A в виде предела операторнозначной функции $\lambda | \to A_{\lambda}$ при $\lambda \to -0$ естественно приводит упомянутая выше теорема Неймана. Однако существование этого предела, насколько известно автору, не было ранее установлено. В (4), стр. 378, положительное самосопряженное расширение оператора A с конечным дефектным числом строится в виде частичного предела функции $\lambda | \to A_{\lambda}$ при $\lambda \to -0$.

^{*} Обозначение $A_{-\infty}$ обосновывается так же, как A_{-0} . ** Если m>0, то $A_{-0}=A_0$; это следует, в частности, из теоремы 4, примененной к оператору $(I+A)^{-1}$. То, что в этом частном случае A_0 есть мягкое расширение оператора A, установлено М. Г. Крейном ((7), теоремы 13, 14).

Для случая оператора с произвольным дефектным числом в (⁵) применяется более сложная процедура, по существу связанная с рассмотрением такого же частичного предела.

Ульяновский государственный педагогический институт им. И. Н. Ульянова

Поступило 24 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Наймарк, Изв. АН СССР, сер. матем., 4, № 1, 53 (1940). ² А. В. Штраус, Изв. АН СССР, сер. матем., 32, № 1, 186 (1968). ³ Л. von Neumann, Math. Ann., 102, 49 (1929). ⁴ Н. И. Ахиезер, И. М. Глазман, Теория линейных операторов в гильбертовом пространстве, «Наука», 1966. ⁵ Ү. Кіlрі, Ann. Acad. Sci. Fennicae, Ser. А, І, № 264 (1959). ⁶ А. В. Штраус, ДАН, 204, № 1, 52 (1972). ⁷ М. Г. Крейн, Матем. сборн. 20 (62), № 3, 431 (1947). ⁸ М. Н. Stone, Linear Transformations in Hilbert Space, N. Y., 1932. ⁹ K. Friedrichs, Math. Ann., 109, 465 (1934).