УДК 549.731.11

МИНЕРАЛОГИЯ

г. п. кудрявцева, в. а. жиляева

О САМООБРАЩЕНИИ ТЕРМООСТАТОЧНОЙ НАМАГНИЧЕННОСТИ В ПРИРОДНЫХ ФЕРРИШПИНЕЛИДАХ ИЗОМОРФНОГО РЯДА $FeFe_2O_4-MgAl_2O_4$

(Представлено академиком В. И. Смирновым 27 IV 1972)

В настоящее время в связи с проблемой отрицательных аномалий, образование которых может быть обусловлено как инверсией геомагнитного поля Земли, так и самообращением термоостаточной намагниченности, теоретически и экспериментально изучаются все случаи самообращения и его возможные механизмы.

При изучении природы самообращения термоостаточной памагниченности I_{rt} в титаномагнетитах из ультраосновных пород интрузий Кугда и Лесная Сопка (4 , 2) было показано, что самообращение I_{rt} обусловлено

обменным взаимодействием между ферримагнетиками изоморфного ряда магнетит $FeFe_2O_4$ — магнезиальный аналог ульвешпинели $Mg_2 \cdot TiO_4$, возникающими при частичной регомогенизации телец распада твердого раствора. Нами также обнаружено частичное самообращение I_{rt} в магнезиальных титаномагнетитах из оливин-пироксеновых пород Ковдорского массива (Кольский полуостров) в том же температурном интервале (325—350°).

Сходство поведения I_{rt} в титаномагнетитах Ковдорского массива с изученными ранее ферримагнетиками свидетельствует в пользу механизма самообращения термоостаточной намагниченности, высказанного ранее (1, 2).

Однако данный механизм самообращения I_{rt} , по-видимому, является возможным не только для ранее описанного изоморфшого ряда, но и для других изоморфных рядов и

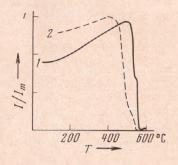


Рис. 1. Зависимость намагниченности (в относительных единицах) от температуры для образца из мелилитовых пород Ковдорского массива. *1* — первое нагревание, *2* — четвертов охлаждение

серий, и особенно тех, в которых наблюдаются разрывы смесимости. Нами были изучены образцы ферришпинелидов из метасоматических мелилитовых пород Ковдорского массива, относящихся к изоморфиому ряду магнетит $FeFe_2O_4$ — шпинель $MgAl_2O_4$, вещество которых при термообработках претерпевало существенные изменения как по составу, так и по структуре. В этих сложных минеральных агрегатах предполагалось самообращение I_{rt} , которое было подтверждено экспериментами по термонамагничиванию и терморазмагничиванию.

На термомагнитной кривой нагревания (рпс. 1), измерешной на установке, описанной в (3), отчетливо выявляются две ферримагнитные фазы с точками Кюри $\theta_1 = 562 \pm 2^\circ$ и $Q_2 = 537 \pm 2^\circ$. Однако микроскопические наблюдения в аншлифах и микрорентгеноспектральный анализ на JXA-5 свидетельствуют об однородности исследуемого образца. Следовательно, исходя из термомагнитных данных, в образде можно было ожидать неоднородностей, размеры которых лежали бы за порогом разреше-

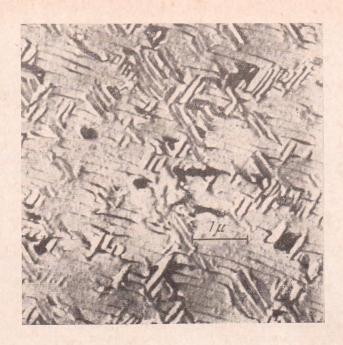


Рис. 2. Электронная микрофотография структур раснада ферришцинелида изоморфного ряда магнетит шцинель, Целлюлозно-угольная реплика. Травление $\rm HCl~10~cek.~14~100 \times$

ния современных оптических микроскопов и локальности микрозонда. Микрофотографии, полученные Н. Е. Сергеевой на электронном микроскопе ∂M -7, обнаружили тонкие (\sim 0,1 μ) пластинчатые структуры распада твердых растворов (рис. 2). Измерения магнитной вязкости, весьма чувствительной к структуре зерен (4), не обнаружили повышенных ее значений, как это обычно наблюдается при наличии подобных структур

Таблица 1 Химический состав обр. 231 из мелилитовых пород Ковдорского массива

Окисел	Общее содержание		Содержание по миналам, молек. кол. 🗙 102		
	вес.%	молек. кол. × 104	(Mg, Fe) (Al, Fe) ₂ O ₄	(Fe, Mn, Mg) Fe ₂ O ₄	CaTiO ₃
$\begin{array}{c} MnO \\ Cr_2O_3 \\ SiO_2 \\ FeO \\ Fe_2O_3 \\ MgO \\ Al_2O_3 \\ TiO_2 \\ CaO \\ V_2O_5 \\ ZnO \end{array}$	0,32 He oup. " " " " " " " " " " " " " " " " " " "	2954 4272 1466 207 128 127	730 1637 1114 207	2238 2635 352	128 127
Σ	99,41	9199	3688 (40,53%)	5225 (56,80%)	255 (2,77%)

П римечание. Содержания $\mathrm{Cr}_2\mathrm{O}_3$, SiO_2 и $\mathrm{V}_2\mathrm{O}_6$, по данным микрорентгеноспектрального анализа, не превышают 0.1%.

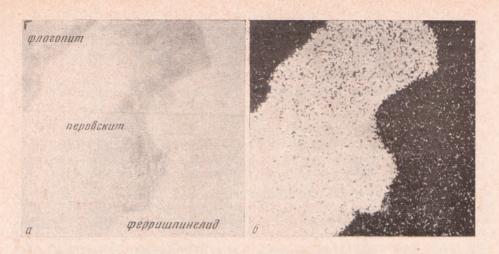


Рис. 3. Кайма перовскита у ферримагнитного минерала. a — изображение в погло- менных электронах, b — изображение в рентгеновских лучах $\mathrm{Ti}K_{\alpha}$. 600 \times

распада твердых растворов. Эти данные позволили предположить, что обе фазы — и матрица, и тельца распада — магнитны. Наличие двух фаз со структурой шпинели также фиксируется рентгено-дифракционным анализом, выполненным на дифрактометре УРС-50-ИМ: $a_{01}=8,371\pm0,002$, $a_{02}=8,353\pm0,008$ Å. С учетом приведенных выше данных был пересчитан химический анализ образца (табл. 1). Содержание кальция и титана в исследуемом образце, по-видимому, связано с примесью перовскита, образующего каймы на вкрапленниках ферримагнитного минерала (см. рис. 3). Данные микрорентгеноспектрального анализа свидетельствуют об отсутствии макроколичеств титана в ферримагнетике (содержание титана не превышает 0,1%).

Кривые нагревания и охлаждения исследованного образца резко не совпадают («температурный гистерезис») (см. рис. 1): вещество в процессе нагревания претерпевает необратимые пзменения. На дифрактограмме термообработанного образца (нагрев в воздухе до $T=660^\circ$ и выдержка при этой температуре в течение $^{1}/_{2}$ часа) проявляются рефлексы только одной шпинельной фазы с параметром элементарной ячейки $a_0=8,361\pm0,011$ Å. Значительный разброс в параметре a_0 свидетельствует

о неоднородности ее состава.

Из этих данных следует, что при нагревании ферримагнитного вещества идет процесс регомогенизации структур распада твердого раствора в системе магнетит - шпинель по механизму низкотемпературной, структурно-чувствительной диффузии, при которой магнетит резорбируется шпинелью при очень малой скорости растворения последней (⁵). В результате встречной диффузии ионов железа, с одной стороны, и магшия и алюминия — с другой, возникает непрерывная серия составов, представляющих собой неравновесный твердый раствор с общим кислородным каркасом, где в направлении потока диффузии отмечается постепенный переход от магнетита к магнезиально-алюминистой ппинели, т. е. существует определенный градиент состава. В этой серии составов в паправлении потока диффузии непрерывно возрастает содержание ионов магипи и алюминия и падает содержание ионов железа: точка Кюри магнетита при этом практически не изменяется при повторных термообработках, а величина магнитной восприимчивости убывает (односторонияя диффузия). Магнитный момент октаэдрической В-подрешетки спачала уменьшается, так как магний и алюминий, предпочитающие октаэдрическую координацию $\binom{6}{7}$, собственного магнитного момепта не имеют. При определенном составе наолюдается компенсация магнитных моментов октаэдрической и тетраэдрической подрешеток. Это можно показать приняв какое-либо из известных катионных распределений в изоморфном ряду магнетит $FeFe_2O_4$ — шпинель $MgAl_2O_4$:

Катионное распределение	Магнитный момент*
1. $Fe^{3+}[Fe^{2+}Fe^{3+}]O_4$	$\Sigma B - \Sigma A = +4.0 \mu_B$
2. $Fe^{3+} [Fe^{2+}_{0,9}Mg_{0,1}Fe^{3+}_{0,8}Al_{0,2}] O_4$	$\Sigma B = \Sigma A = +2.6 \mu_B$
3. $Fe^{3+} [Fe^{2+}_{0,8}Mg_{0,2}Fe^{3+}_{0,6}Al_{0,4}] O_4$	$\Sigma B - \Sigma A = +1.2 \mu_B$
4. $\text{Fe}^{3+} \left[\text{Fe}_{0.7}^{2+} \text{Mg}_{0.3} \text{Fe}_{0.4}^{3+} \text{Al}_{0.6} \right] \text{O}_4$	$\Sigma B - \Sigma A = -0.2 \mu_B$

В процессе термопамагничивания первым I_{rt} приобретает магнетит, имеющий большую точку Кюри. По мере охлаждения «эстафета» магнитных превращений проходит всю последовательность составов, промежуточных между магнетитом и шпинелью, каждый из которых характеризуется вполне определенной точкой Кюри. В момент, когда тетраэдрическая Λ -подрешетка будет преобладать над октаэдрической B-подрешеткой, начинается самообращение намагниченности.

Эксперименты по термонамагничиванию и терморазмагничиванию, выполненные В. А. Жиляевой по методике (1, 2), показывают, что явление самообращения I_{τ^l} в этих образцах обратимо и наблюдается в температурном интервале $475-480^\circ$, тогда как в ранее исследованных титаномагнетитах оно фиксировалось при $325-350^\circ$ (1, 2). Магнитные измерения, которые будут обсуждены в специальной работе, подтверждают обменный механизм самообращения термоостаточной памагниченности в ферримагнетиках из мелилитовых пород Ковдорского массива.

Резкий магнитный гистерезис, по-видимому, является первым признаком возможного самообращения I_{rt} в природных ферримагнетиках, обусловленного наличием термонамагниченностей обратного знака в прямом магпитном поле. Таким образом, на основе изложенных данных и с учетом данных по самообращению I_{rt} в магнезиальных титаномагнетитах Кугды и Лесной Сопки можно прогнозировать самообращение термоостаточной намагниченности и в других изоморфных рядах и сериях твердых растворов с разрывами смесимости.

Московский государственный университет им. М. В. Ломоносова Поступило 21 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Жиляева, Л. В. Колесников, Г. Н. Петрова и др., Физика Земли, № 10 (1970). ² В. А. Жиляева, Л. В. Колесников и др., Физика Земли, № 6 (1971). ³ Г. П. Барсанов, Л. В. Колесников, Н. Е. Сергеева, Сборн. Проблемы геохимии, «Наука», 1965. ⁴ В. А. Жиляева, Л. В. Колесников, Физика Земли, № 11 (1966). ⁵ F. K. Lotering, J. Inorg. and Nucl. Chem., 9, № 2 (1959). ⁶ Л. В. Колесников, Вест. Московск. унив., сер. геол., № 6 (1970). ⁷ Е. В. Гортер, УФН, 57, в. 2—3 (1955).

^{*} ΣA — сумма магнитных моментов ионов, находящихся в тетраэдрической A-подрешетке; ΣB — сумма магнитных моментов ионов, находящихся в октаэдрической B-подрешетке.