УДК 517.948.32

MATEMATUKA

Член-корреспондент АН СССР М. М. ЛАВРЕНТЬЕВ, А. Г. БУХГЕЙМ

ОБ ОДНОМ КЛАССЕ ЗАДАЧ ИНТЕГРАЛЬНОЙ ГЕОМЕТРИИ

1. Пусть $\Gamma(x, v) = \{\xi \in R^n : \varphi(\xi, x, v) = 0\}$ — гладкая ориентировочная гиперноверхность, проходящая через точку x и имеющая в этой точке нормаль v (не ограничивая общности, можно считать, что $|D_{\mathfrak{t}}\varphi| = 1$). Пусть далее $\Omega \subset R^n$ — ограниченная область и $u \in C_0(\Omega)$. Рассмотрим уравнение

$$\int_{\Gamma(x, v)} u \, d\sigma = v(x, v), \quad x \in \Omega, \quad v \in S; \tag{1}$$

здесь S — единичная сфера в R^n , $d\sigma$ — эвклидов элемент поверхности $\Gamma(x,\, \mathbf{v})$.

3адача. По функции v(x, v) восстановить функцию u.

Замечание. В указанной постановке задача (1) переопределена, так как по функции 2n-1 переменных мы восстанавливаем функцию n переменных. Однако, если для семейства Γ гиперповерхностей, по которому происходит интегрирование в задаче интегральной геометрии, выполнено условие $Vx \in \Omega$, $Vv \in S$ существует единственная $\Gamma(x, v) \in \Gamma$, то мы приходим к задаче (1) и переопределенность может быть устранена. Ограничимся двумя примерами.

1) $\varphi(\xi, x, v) = \langle \xi - x, v \rangle$, т. е. $\Gamma(x, v)$ — плоскости. Это классическая вадача Радона (см., например, (¹)), и функция v зависит на самом деле

от п независимых параметров.

2) Пусть Γ — семейство гиперповерхностей, которое получается в результате нараллельного переноса в пространстве произвольного строго выпуклого тела с гладкой границей. Так как положение этого тела в пространстве однозначно определяется своим центром тяжести, то семейство $\Gamma(x, v)$ зависит фактически от n нараметров. Например, если указанное тело есть единичный шар, то $\Gamma(x, v)$: $\varphi(\xi, x, v) = \langle \xi - x, v \rangle + \frac{1}{2} | \xi - x |^2 = 0$ — семейство единичных сфер, которое однозначно определяется своим центром z = x - v. Задача восстановления функции через интегралы от нее по сферам единичного радиуса изучалась Джоном (2).

2. Переходим к решению уравнения (1). Усредняя (1) по всем $v \in S$,

получим

$$\int \frac{K(\xi, x)}{|\xi - x|} u(\xi) d\xi = v_1(x), \tag{2}$$

где

$$v_{1}(x) = \int_{|v|=1} v(x, v) d\omega_{v},$$

$$K(\xi, x) = \int_{|y|=1}^{\infty} \delta\left(\frac{\varphi(\xi, x, y)}{|\xi - x|}\right) d\omega_{y},$$

 $d\omega_{v}$ — элемент телесного угла в R^{n} , δ — функция Дирака. По формуле Тейлора

$$\varphi(\xi, x, v) = \langle \xi - x, v \rangle + \langle A(\xi, x, v)(\xi - x), (\xi - x) \rangle,$$

где A — матрица вторых производных.

Пусть

$$||A||_{C} = \sup_{\substack{\xi, x \in \Omega \\ v \in S}} ||A(\xi, x, v)||, \quad ||A|| = \sup_{z \in R^{n}} \frac{\langle Az, Az \rangle}{\langle z, z \rangle},$$

$$||D_{\nu}A||_{C}^{2} = \sum_{i=1}^{n} ||A_{\nu_{i}}^{'}||_{C}^{2}.$$

$$\|D_{\mathsf{v}}A\|_{\mathcal{C}}^2 = \sum_{j=1}^n \|A_{\mathsf{v}_j}'\|_{\mathcal{C}}^2.$$

Лемма. Если $\varphi \in C^3(\Omega \times \Omega \times S)$ и $||A||_c \leq \delta / d(\Omega)$, $||D_v A||_c \leq$ $\leqslant \delta/d(\Omega)$, где $\delta < 1$ и $d(\Omega)-\partial$ иаметр Ω , то $K(\xi,x) \in C(\Omega \times \Omega)$ и $K(x,x) = \omega_{n-1}-n$ лощадь единичной сферы в R^{n-1} . Если дополнительно предположить, что $\varphi \in C^{m+3}(\Omega \times \Omega \times S)$, то при $\xi \neq x$ ядро $K(\xi,x)$ имеет непрерывные производные по х до порядка т, причем

$$|D_x^{\alpha}K(\xi, x)| \leq \frac{C_{\alpha}}{|\xi - x|^{|\alpha|-1}}, \quad 1 \leq |\alpha| \leq m.$$

В дальнейшем для простоты ограничимся нечетномерным пространством R^n . Применяя к (2) оператор $\Delta^{(n-1)/2}$ (Δ — оператор Лапласа), мы получим интегральное уравнение второго рода, которое по лемме имеет слабую особенность. Итак, справедлива

Теорема 1. Если $\varphi = C^{n+2}(\Omega \times \Omega \times S), v_1(x) = C^{n-1}(\Omega) u d(\Omega) < \varepsilon$, $\varepsilon = \varepsilon(\Gamma)$, то уравнение (2) имеет единственное решение $u \in C(\Omega)$.

Замечание 1. В четномерном пространстве справедлива аналогичная теорема, только в этом случае для сведения уравнения (1) к уравнению второго рода нужно применить оператор Лапласа в дробной степени.

3. Уравнение (1) можно рассматривать как систему операторных уравнений первого рода в $L_2(\Omega)$:

$$A_{\nu}u = v_{\nu}, \quad \nu \in S,$$

$$(A_{\nu}u)(x) = \int_{\Gamma(x, \nu)} u \, d\sigma.$$

Предположим, что функции $g(v) = (A_v u, h)_{L_2(\Omega)}$ аналитические на S, $\operatorname{V}\!u \in \mathcal{C}_{\scriptscriptstyle 0}(\Omega)$, $\operatorname{V}\!h \in H$, $\overline{H} = L_{\scriptscriptstyle 2}(\Omega)$ (в качестве H можно взять, папример, многочлены). Пусть далее множество $\omega \subseteq S$ обладает тем свойством, что любая аналитическая на S функция, равная пулю на ω , равна пулю тождественно. Тогда в условиях теоремы 1 функция и определяется однозначно по функции $v(x, y), x \in \Omega, y \in \omega$.

Вычислительный центр Сибирского отделения Академии наук СССР Новосибирск

Поступило 15 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. М. Гельфанд, М. И. Граев, Н. Я. Виленкии, Интегральная геометрия и связанные с ней вопросы теории представлений, обобщенные функции, в. 5, ² Ф. Пон, Плоские волны и сферические средние, ИЛ, 1958.