УДК 517.95

MATEMATUKA

В. Г. МАЗЬЯ

О ЗАДАЧЕ С КОСОЙ ПРОИЗВОДНОЙ В ОБЛАСТИ ТИПА ПОЛИЭДРА

(Представлено академиком В. И. Смирновым 23 Х 1972)

В этой работе изучается эллиптическая задача с косой производной в n-мерной области, локально диффеоморфной полиэдру. Указан способ построения некоторого весового пространства, в котором задача однозначно разрешима. Тем самым обобщается один из результатов статьи (¹), где предполагалось, что грапица области содержит непересекающиеся гладкие (n-2)-мерные ребра. Отметим, что если в (¹) основным моментом доказательства было сведение «модельной задачи» к задаче Римана — Гильберта с разрывными коэффициентами, то здесь важную роль пграет пекоторая модификация принцина максимума. Мы существенно используем также факты теории общих эллиптических краевых задач на многообразиях с особенностями.

 1° . Область, оператор краевой задачи. Пусть Ω —связное открытое подмножество n-мерного риманова многообразия $\mathcal R$ класса C^1 с компактным замыканием Ω и границей $\partial\Omega$. Предположим, что множество Ω локально C^2 -диффеоморфпо полиэдру. Будем называть гранями Ω гладкие открытые компоненты $\partial\Omega$ коразмерности 1; объединение граней обозначим через $\partial_1\Omega$. Множество $\partial\Omega\setminus\partial_1\Omega$ (особое подмножество $\partial\Omega$) представляет собой объединение конечного числа непересекающихся открытых связных подмногообразий $\mathcal R$ класса C^2 (стратов). Граница каждого страта есть объединение стратов меньших размерностей. Множество всех стратов, границы которых содержат страт T, называется звездой st T этого страта.

Пусть на каждой грани F определено единичное векторное поле 1 такое, что $(1, \mathbf{n}) \ge \mathrm{const} \ge 0$, где $\mathbf{n} - \mathrm{нормаль}$ к F, направленная во внешность Ω . Поле нормалей продолжается по непрерывности на ∂F . Предположим, что в каждой точке $\zeta \in \partial F$ существует предел $\mathbf{l}(\zeta; \mathbf{n}(\zeta)) = \mathrm{lim} \, \mathbf{l}(\eta)$

при $\eta \to \zeta$, $\eta \in F$.

Обозначим через L дифференциальный оператор $\mathcal{A}_1 + \mathcal{A}_1 + \mathcal{A}_0$, где \mathcal{A}_2 — оператор Лапласа в $\hat{\mathcal{R}}$, $\hat{\mathcal{A}}_1$ — оператор первого порядка с непрерывными в Ω вещественными коэффициентами, $\hat{\mathcal{A}}_1 1 \equiv 0$, $\hat{\mathcal{A}}_0$ — непрерывная в Ω неположительная функция. Будем изучать оператор задачи с косой

производной $\{L \ B \ \Omega, \partial / \partial l \ Ha \ \partial_1 \Omega \}$.

 2° . Модельные операторы в конусе п на сфере. Зафиксируем страт T размерности d_T п точку $\zeta \in \overline{T}$. Если $\zeta \in T$, то через $\mathcal{N}(\zeta,T)$ обозначим $(n-d_T)$ -мерное эвклидово пространство, нормальное к T в точке ζ , и через $\mathcal{K}(\zeta)$ — касательный конус к Ω в той же точке. Очевидно, $\mathcal{K}(\zeta) = R^{d_T} \times K(\zeta,T)$, где $K(\zeta,T) - (n-d_T)$ -мерный конус («многогранный угол») в пространстве $\mathcal{N}(\zeta,T)$. Пусть $\partial_t K(\zeta,T)$ — объединение граней $K(\zeta,T)$. Каждая из этих граней касается в точке ζ грани Ω . Внешние нормали $\mathbf{v}(\eta)$ к $\partial K(\zeta,T)$ в точках η любой из граней $K(\zeta,T)$ параллельны нормали $\mathbf{n}(\zeta)$ к соответствующей грани Ω в точке ζ . Определим в точках $\eta \in \partial_t K(\zeta,T)$ единичные векторы $\gamma(\zeta,T;\mathbf{v}(\eta))$, параллельные проекциям векторов $\mathbf{l}(\zeta,\mathbf{n}(\zeta))$ на $\mathcal{N}(\zeta,T)$. Для $\zeta \in \partial T$

множества $\mathcal{N}(\zeta,T)$, $K(\zeta,T)$ и векторы $\gamma(\zeta,T;\mathbf{v}(\eta))$ вводятся как пределы $\mathcal{N}(\chi,T)$, $K(\chi,T)$ и $\gamma(\chi,T,\mathbf{v}(\eta))$ при $\chi \to \zeta$, $\chi \in T$. Конус $K(\zeta,T)$ можно представить как прямое произведение $(0,+\infty) \times G(\zeta,T)$, где $G(\zeta,T)$ подобласть (n-d-1)-мерной сферы $\mathcal{P}(\zeta,T) = \{\eta \in \mathcal{N}(\zeta,T): |\eta| = 1\}$. Множество $\overline{G}(\zeta,T)$ локально C^2 -диффеоморфно $(n-d_{\scriptscriptstyle T}-1)$ -мерному полиэдру и стратифицировано в том же смысле, что и Ω . Гранями и стратами $\overline{G}(\zeta,T)$ являются пересечения граней и стратов $K(\zeta,T)$ со сферой $\mathscr{S}(\zeta,T)$. Пусть $\partial_1 G(\zeta,T)$ — объединение граней области $G(\xi, T)$.

В дальнейшем мы иногда не будем отмечать зависимость от ζ и T

в обозначениях $K(\zeta, T), G(\zeta, T)$ и т. п.

Рассмотрим оператор $\Delta_{\eta} - 1$ ($\eta \in R^{n-d_T}$ и $\Delta_{\eta} -$ оператор Лапласа) в конусе K, а также определенный на $\partial_1 K$ оператор $\gamma(\mathbf{v}(\eta))$, ∇_{η}). Последний можно записать в виде

$$\gamma_{\nu}\rho^{-1}\,\partial\,/\,\partial\nu\,+\,\gamma_{\rho}\,\partial\,/\,\partial\rho\,+\,\rho^{-1}\mathcal{D},$$

где $\rho = |\eta|$; γ_{ν} и γ_{ρ} — нормальная и радиальная составляющие вектора γ ; — вещественный дифференциальный оператор первого порядка на гранях области G. «Модельный» оператор задачи с косой производной $\{\Delta-1, \partial/\partial\gamma\}$ в конусе K обозначим через $\mathcal{Q}(\zeta, T)$.

Применяя к операторам Δ и ∂ / $\partial\gamma$ преобразование Меллина, получаем

зависящий от комплексного параметра λ оператор краевой задачи

$$\mathscr{P}_{\lambda}(\zeta, T) = \{\delta + \lambda(\lambda + n - d_{T} - 2) \mid_{B} G, \gamma_{\nu} \partial / \partial_{V} + \mathscr{D} + \lambda \gamma_{\rho} \mid_{B} \partial_{1}G\},$$

где δ — оператор Лапласа на сфере \mathscr{S} .

3°. Функциональные пространства. С каждым стратом $T \subset \partial \Omega$ свяжем вещественное число eta_T и обозначим через ${\mathscr B}$ цабор всех eta_T . Пусть m — целое неотрицательное число. Введем пространство $\mathscr{H}^m_{\mathfrak{R}}(\Omega)$ функций в Ω , норма в котором (в локальной записи) имеет вид

$$\Big(\sum_{||u||=0}^{m}\int\limits_{\Omega}|\partial^{\mu}u|^{2}\sum_{\{T\}}r_{T}^{2(||\mu|-m)}\prod_{\{T\}}r_{T}^{2\beta_{T}}dx\Big)^{1/2},$$

где μ — мультииндекс (μ_1,\ldots,μ_n) , $\partial^{\mu}=\partial^{|\mu|}/\partial x_1^{\mu_1}\ldots\partial x_n^{\mu_n}$, $\{T\}$ — множество всех стратов $\partial\Omega$, r_T — расстояние от точки интегрирования до страта T. Через $\mathcal{H}_B^{m-1/2}(\partial\Omega)$, где $m \ge 1$, обозначим пространство предельных значений функций из $\mathcal{H}^m_{\mathcal{B}}(\Omega)$ на гранях Ω .

Пусть $\mathscr{B}(\operatorname{st} T)$ — совокупность показателей β_R стратов R звезды страта T. Приписывая точке $\zeta \in \overline{T}$ показатель β_T , а остальным стратам конуса $K(\zeta, T)$ — показатели соответствующих стратов звезды T, получим набор $\mathscr{B}(K) = \{\beta_T, \mathscr{B}(\operatorname{st} T)\}.$

Каждому страту границы области $G(\zeta, T)$ прилишем показатель соответствующего страта звезды T и для набора показателей стратов $\partial G(\zeta,T)$

воспользуемся уже введенным обозначением $\mathcal{B}(\operatorname{st} T)$.

Наряду с $\mathcal{H}^m_{\mathcal{B}}(\Omega)$ будем использовать определяемые аналогично пространства $\mathcal{H}^m_{\mathcal{B}(K)}(K)$ и $\mathcal{H}^m_{\mathcal{B}(\operatorname{st} T)}(G)$, а также пространство $\mathscr{E}^m_{\mathcal{B}(K)}(K) =$ $=\mathcal{H}^m_{\mathcal{B}(K)}(K)\cap\mathcal{H}^0_{\mathcal{B}(K)}(K)$. Введем еще пространства граничных значений $\mathscr{E}_{\mathscr{B}(K)}^{m-1}(\partial K)$ и $\mathscr{H}_{\mathscr{B}(\operatorname{st} T)}^{m-1}(\partial G)$.

4°. Корректные наборы показателей. Будем говорить, что набор $\mathcal{B}(\operatorname{st} T)$ принадлежит первому классу, если каждый показатель β_R этого набора больше $2-1/2(n-d_R)$ или если st $T=\phi$. Ко второму классу отнесем наборы $\mathcal{B}(\operatorname{st} T)$, в которых хотя бы один показатель β_R не превосходит $2 - \frac{1}{2}(n - d_R)$.

Назовем набор $\mathscr{B}(\operatorname{st} T)$ первого класса корректным, если выполнены

следующие два условия:

lpha) какова бы ни была точка $\zeta \in T$, оператор $\mathscr{P}_{\lambda}(\zeta, T)$ при всех λ , кроме дискретного множества вещественных чисел, есть изоморфизм $\mathscr{H}^2_{\mathscr{B}(\operatorname{st} T)}(G) \approx \mathscr{H}^0_{\mathscr{B}(\operatorname{st} T)}(G) imes \mathscr{H}^*_{\mathscr{B}(\operatorname{st} T)}(\partial G);$

eta) для всех $\zeta \in \overline{T}$ точка $\lambda = 0$ — простое собственное число оператора

 \mathscr{P}_{λ} (с собственной функцией 1).

Набор $\mathscr{B}(\operatorname{st} T)$ второго класса называется корректным, если он удовлетворяет условию α) и если

 γ) для всех $\xi \equiv \hat{T}$ существует непрерывный обратный \mathcal{P}_0^{-1} .

Лемма 1. Если $\mathcal{B}(\operatorname{st} T)$ — корректный набор первого класса, то решение $\Psi \in \mathcal{H}^0_{-\mathcal{B}}(G)$ сопряженной задачи $\mathcal{P}_0^*\Psi = 0$ (т. е. задачи $\delta \Psi = 0$ в G, $\gamma_*\partial\Psi$ / $\partial v - \mathcal{D}\Psi = (2-n+d_{\scriptscriptstyle T})\gamma_{\scriptscriptstyle 0}\Psi$ на ∂G), нормированное равенством

$$\int_{G} \Psi dm_{n-d_{T}-1} = 1,$$

положительно в G.

Пусть $\mathscr{B}(\operatorname{st} T)$ — корректный набор первого класса и Ψ — функция, определенная в лемме 1. Введем функцию

$$\overline{T} \Rightarrow \zeta \rightarrow \varphi_T (\zeta) = \int_{\partial G} \frac{\gamma_{\rho}}{\gamma_{\nu}} \Psi dm_{n-d_{T}-2}.$$

Для (n-2)-мерных стратов T функция $\varphi_{\tau}(\xi)$ вычисляется явно. Пусть $\omega(\xi)$ — раствор угла $K(\xi,T)$, $\mathbf{v}_{1,2}(\xi)$ — паправления внешних нормалей к сторонам K, $\gamma_{1,2}(\xi)$ — соответствующие значения поля γ на ∂K . Обозначим через $\tau_{1,2}(\xi)$ углы между $\mathbf{v}_{1,2}(\xi)$ и $\gamma_{1,2}(\xi)$, отсчитываемые от $\mathbf{v}_{1,2}(\xi)$ к $\gamma_{1,2}(\xi)$, $|\tau_{1,2}(\xi)| < \pi/2$. Тогда $\Psi = 1/\omega(\xi)$ и

$$\varphi_T(\zeta) = \operatorname{tg} \, \tau_1(\zeta) + \operatorname{tg} \, \tau_2(\zeta).$$

Пусть набор $\mathscr{B}(\operatorname{st} T)$ корректен и $\zeta \in \overline{T}$. Обозначим через $\lambda_T^+(\zeta)$ и $\lambda_T^-(\zeta)$ первые положительное и отрицательное собственные числа оператора \mathscr{P}_{λ} . Для (n-2)-мерного страта T

$$\lambda_{T}^{\pm}(\zeta) = \left\{ egin{array}{ll} rac{ au_{1}(\zeta) + au_{2}(\zeta)}{\omega\left(\zeta
ight)} \,, & ext{если } \phi_{T}\left(\zeta
ight) \gtrless 0, \ rac{ au_{1}(\zeta) + au_{2}(\zeta) \pm \pi}{\omega\left(\zeta
ight)} \,, & ext{если } \phi_{T}\left(\zeta
ight) \lessgtr 0. \end{array}
ight.$$

5°. Сформулируем некоторые вспомогательные утверждения.

 Π емма 2. Пусть $\mathcal{U}-$ окрестность некоторой точки страта $T,\overline{\mathcal{U}}\cap\partial T=$ = ϕ , u u — непрерывная в $\overline{\Omega}\cap\mathcal{U}$ функция, удовлетворяющая уравнению Lu=0 на $\mathcal{U}\cap\Omega$ u краевому условию $\partial u/\partial l=0$ на $\mathcal{U}\cap\partial_1\Omega$, $u\neq const.$

Если $\mathcal{B}(\operatorname{st} T)$ — корректный набор первого класса и $\phi_T(\zeta) < n - d_T - 2$ на \overline{T} , то u не принимает локальных экстремальных значений в точках страта T.

 \mathbb{R} Лемма 3. Если $\mathscr{B}(\operatorname{st} T)$ — корректный набор первого класса $\phi_T(\zeta)$

 $< n - d_T - 2 u$

$$2 - \frac{1}{2}(n - d_T) < \beta_T + \sum_{R \in \text{st } T} \beta_R < 2 - \frac{1}{2}(n - d_T) - \lambda_T^-(\zeta)$$
 (1)

на \overline{T} , то оператор $Q(\zeta,T)\colon\mathscr{E}^2_{\mathscr{B}(K)}(K)\to\mathscr{E}^0_{\mathscr{B}(K)}(K)\times\mathscr{E}^{1_2}_{\mathscr{B}(K)}(K)$ является

изоморфизмом.

 Π емм а 4. Пусть S- страт $\partial\Omega$. Если для любого страта $T \subset \operatorname{st} S$ набор $\mathscr{B}(\operatorname{st} T)$ корректен, $\varphi_T(\zeta) < n-2-d_T$ и выполнены неравенства (1) при всех $\zeta \equiv \overline{T}$, то набор $\mathscr{B}(\operatorname{st} T)$ корректен.

Лемма 5. Если $\mathscr{B}(\operatorname{st} T)$ — корректный набор первого класса, $\varphi_{\scriptscriptstyle T}(\zeta) > n-2-d_{\scriptscriptstyle T}$ и

$$2 - \frac{1}{2}(n - d_T) - \lambda_T^+(\zeta) < \beta_T + \sum_{R \in \text{st } T} \beta_R < 2 - \frac{1}{2}(n - d_T)$$
 (2)

на \overline{T} , то оператор $\mathscr{Q}(\zeta,T)$: $\mathscr{E}^2_{\mathscr{B}(K)} \to \mathscr{E}^0_{\mathscr{B}(K)}(K) \times \mathscr{E}^{1/2}_{\mathscr{B}(K)}(K)$ является изоморфизмом.

 6° . Теорема о разрешимости. Опишем способ построения набора \mathcal{B} , для которого задача с косой производной разрешима в $\mathcal{H}_{s}^{2}(\Omega)$. Применим индукцию по размерности стратов. Пусть сначала T — любой (n-2) -мерный страт $\partial\Omega$. Предположим, что для всех $\zeta \in \overline{T}$ либо $\phi_{T}(\zeta) < 0$, либо $\phi_{T}(\zeta) > 0$. В первом случае потребуем, чтобы показатель β_{T} удовлетворял неравенствам $1 < \beta_{T} < 1 - \lambda_{T}(\zeta)$ при всех $\zeta \in \overline{T}$, а во втором — неравенствам $1 - \lambda_{T}^{+}(\zeta) < \beta_{T} < 1$. Тогда набор $\mathcal{B}(\operatorname{st} T)$ для любого (n-3)-мерного страта T является корректным. Предположим, что все показатели стратов R размерностей $d_{R} = n-2, n-3, \ldots, k+1$ определены так, что для произвольного k-мерного страта T набор $\mathcal{B}(\operatorname{st} T)$ корректен. Если $\mathcal{B}(\operatorname{st} T)$ — набор первого класса, то показатель β_{T} подчиним условию (1) в случае $\phi_{T}(\zeta) < n-k-2$ и условию (2) в случае $\phi_{T}(\zeta) > n-k-2$. Для набора $\mathcal{B}(\operatorname{st} T)$ второго класса положим

$$2 - \frac{1}{2}(n-k) - \lambda_T^+(\zeta) < \beta_T + \sum_{R \in \text{st } T} \beta_R < 2 - \frac{1}{2}(n-k) - \lambda_T^-(\zeta)$$

при всех $\xi \in T$. При таком выборе показателей стратов размерностей $n-2,\ldots,k+1,\ k$ наборы $\mathscr{B}(\operatorname{st} T)$ для (k-1)-мерных стратов T корректны. Если при продолжении этого процесса каждая функция $\phi_T(\xi)$ по принимает значения $n-d_T-2$, то можно определить показатели всех стратов $\partial\Omega$.

В следующей теореме заключен осповной результат работы.

Теорема. Пусть $\mathcal{B} = \{\beta_T\}$ — напор показателей, полученный в результате только что описанной процедуры. Если 1) $\mathcal{A}_0 \neq 0$ в Ω или 2) $\mathcal{A}_0 \equiv 0$ и $\beta_T \geqslant n - d_T - 2$ хотя бы для одного страта T, то оператор $\{L, \partial/\partial l\}$ осуществляет изоморфизм $\mathcal{H}^2_{\mathcal{B}}(\Omega) \approx \mathcal{H}^0_{\mathcal{B}}(\Omega) \times \mathcal{H}^{l_{\mathcal{B}}}_{\mathcal{B}}(\Omega)$.

Если $\mathcal{A}_0 \equiv 0$ и $\beta_T < n - d_T - 2$ для всех стратов T, то задача Lv = 0, $\partial v / \partial l = 0$ на $\partial_1 \Omega$ имеет в $\mathcal{H}^2_{\mathcal{B}}(\Omega)$ только тривиальное решение $v = \mathrm{const.}$

Это утверждение обобщает теорему 1 работы (1), доказанную в предположении, что $d_T=n-2$ для всех стратов T, и содержащую условия обратимости оператора $\{L-\lambda,\,\partial\,/\,\partial l\}$ при достаточно больших положительных λ .

Ленинградский государственный университет им. А. А. Жданова

Поступило 25 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. Г. Мазья, Б. А. Пламеневский, Функц. анализ и его приложения, 5, в. 3, 102 (1971).