УДК 513.83

MATEMATHKA

л. медников

СТАБИЛЬНЫЕ И БИСТАБИЛЬНЫЕ ГОМЕОМОРФИЗМЫ

(Представлено академиком П. С. Александровым 1 XI 1972)

Гомеоморфизм * $f: X \to X$ называют стабильным, если его можно-представить в виде композиции $f = f_1 \circ \ldots \circ f_k$ гомеоморфизмов f_i , каждый из которых тождествен на некотором непустом открытом множестве. Мы рассматриваем вопрос: для каких топологических пространств число «множителей» f_i в представлении каждого стабильного гомеоморфизма f можно сократить до двух, т. е. когда каждый стабильный гомеоморфизм является бистабильным. Для несвязных пространств это всегда можно сделать. В данной статье этот вопрос решается положительно для некоторых классов связпых топологических (мы рассматриваем лишь хаусдорфовы) пространств, в частности, для всех топологических векторных пространств, всех тихоновских кубов и пекоторых их подпространств.

1. Сильная локальная однородность топологиче-

ских векторных пространств.

Определение 1. Множество U топологического пространства X называется сильно однородным, если для любых его двух точек x и y существует такой гомеоморфизм $h: X \to X$, что h(x) = y и $h|_{X \setminus U} = id^{**}$.

Пространство Х называется сильно локально однородным,

если его сильно однородные открытые множества составляют базу.

Определение 2. Топологическое пространство X назовем локально однородным в точке x, если для любой окрестности U этой точки найдется такая ее окрестность $Ox \subset U$, что для любой точки $y \in Ox$ существует гомеоморфизм $h \in H(X)$ ***, подчиняющийся условиям h(x) = y и $h|_{X \setminus U} = \mathrm{id}$.

Пространство Х назовем слабо локально однородным, если

опо локально однородно в каждой своей точке.

 Π емма 1. Если топологическое пространство локально однородно во всякой точке связного открытого множества U, то U- сильно однородное множество.

Доказательство. Пусть выполнены условия леммы и $u \in U$. Множество

$$W_u = \{x \in U \mid \exists \text{ Taroe } h' \in H(X), \exists \text{ To } h'(u) = x \exists \text{ if } h'|_{x \setminus v} = \text{id} \}$$

открыто-замкнуто в U. В самом деле, по условию леммы в точке $x \in W_u \subset U$ можно найти окрестность Ox и гомеоморфизм h, удовлетворяющие определению 2. Тогда для гомеоморфизма h', взятого из определения множества W_u , получим: h'(h(u)) = y и $h' \circ h|_{X \setminus U} = \mathrm{id}$. Таким образом, $Ox \subset W_u$. Значит, W_u открыто. Пусть теперь $x \in U \setminus W_u$. Можно найти окрестность Ox, удовлетворяющую определению 2. Ясно, что $Ox \subset U \setminus W_u$. Значит, W_u замкнуто в U. Отсюда $W_u = U$ для любой точки $u \in U$, так как множество U связно. Поэтому множество U сильно однородно.

** id означает тождественный гомеоморфизм.
*** H(X) означает множество всех гомеоморфизмов пространства X.

^{*} Гомеоморфизмами мы называем гомеоморфизмы пространства X на себя.

Следствие. Если слабо локально однородное топологическое пространство локально связно, то оно сильно локально однородно.

Далее нам понадобятся следующие обозначения для множеств и дейст-

вий над ними в векторных пространствах:

$$I(x, y) = \{z \mid z = tx + (1-t)y, \text{ где } 0 \le t \le 1\},$$
 $A + B = \{z \mid z = a + b, \text{ где } a \in A \text{ и } b \in B\},$ $T \cdot U = \{z \mid z = t \cdot u, \text{ где } t \in T \text{ и } u \in U\}.$

Определение 3. Окрестность U нуля топологического векторного пространства называется сжимаемой, если $[0,1)\overline{U} \subset U$ *.

В (³) доказаны следующие два утверждения.

Теорема К (Klee). Во всяком топологическом векторном пространстве сжимаемые окрестности образуют базу этого пространства в нуле.

Лемма К (Klee). Если U-сжимаемая окрестность нуля, то и

U+I(o,x) ** — сжимаемая окрестность нуля для любого $x\in X$.

Теорема 1. Для любой сжимаемой окрестности U нуля в топологическом векторном пространстве X и любых двух таких чисел α и β , что $0 < \alpha < 1 < \beta$, существует гомеоморфизм $h \in H(X)$, удовлетворяющий условиям $h(x) = \alpha x$, если $x \in \overline{U}$, и h(x) = x, если $x \notin \beta U$.

Доказательство. Заметим, что если 0 < t < t', то $tU \subset t\overline{U} \subset t'U$. Рассмотрим отображение $\mu: X \to R$, заданное формулой

$$\mu(x) = \inf\{t > 0, x \in tU\}.$$

Легко проверить, что

$$\mu\left(tx\right)=t\mu\left(x\right),\quad \mu^{-1}\left[0,\,t\right)=\mathop{\cup}\limits_{t'< t}t'U,\quad \mu^{-1}\left(t,\,\infty\right)=\mathop{\cup}\limits_{t'> t}(X\setminus\overline{t'U})$$

при любом t.

Следовательно, и непрерывно.

Рассмотрим гомеоморфизм φ : $[1, \beta] \to [\alpha, \beta]$, при котором $\varphi(1) = \alpha$, $\varphi(\beta) = \beta$.

Рассмотрим непрерывное отображение $h: X \to X$, определенное следую-

щим образом:

$$h\left(x
ight) = \left\{egin{array}{ll} lpha x, & ext{если } \mu\left(x
ight) \leqslant 1, \ rac{\Phi\left(\mu\left(x
ight)
ight)}{\mu\left(x
ight)} x, & ext{если } 1 \leqslant \mu\left(x
ight) \leqslant eta, \ x, & ext{если } eta \leqslant \mu\left(x
ight). \end{array}
ight.$$

Заметим, что если $1 \leq \mu(x) \leq \beta$, то $\mu(h(x)) = \mu\left(\frac{\phi(\mu(x))}{\mu(x)} \cdot x\right) = \phi(\mu(x))$. Докажем, что непрерывное отображение $g: X \to X$,

$$g(x) = \begin{cases} \frac{1}{\alpha} x, & \text{если } \mu(x) \leqslant \alpha, \\ \frac{\varphi^{-1}(\mu(x))}{\mu(x)} x, & \text{если } \alpha \leqslant \mu(x) \leqslant \beta, \\ x, & \text{если } \beta \leqslant \mu(x), \end{cases}$$

обратно к h. В самом деле, если $1 \le \mu(x) \le \beta$, то $\alpha \le \mu(h(x)) \le \beta$ и

$$g\left(h\left(x\right)\right) = \frac{\varphi^{-1}\left(\mu\left(h\left(x\right)\right)\right)}{\mu\left(h\left(x\right)\right)} \, h\left(x\right) = \frac{\varphi^{-1}\left(\varphi\left(\mu\left(x\right)\right)\right)}{\varphi\left(\mu\left(x\right)\right)} \frac{\varphi\left(\mu\left(x\right)\right)}{\mu\left(x\right)} \, x = \frac{\mu\left(x\right)}{\mu\left(x\right)} x = x.$$

Аналогично доказывается, что $h\left(g\left(x
ight)
ight)=x.$

 $^{^*}$ \overline{U} означает замыкание множества U в пространстве X.

Так как g обратно к h, то h — гомеоморфизм. А так как $\overline{U} \subseteq \mu^{-1}[0,1]$, $X \setminus \beta U \subseteq \mu^{-1}[\beta,\infty)$, то h — искомый гомеоморфизм.

Спедствие. Пусть W-сжимаемая окрестность нуля, $u, v \in W$, причем v=tu при $t\geq 1$. Тогда существует такой гомеоморфизм $h'\in H(X)$, что h'(u)=v и $h'|_{X\setminus W}=\mathrm{id}$.

Доказательство. Так как W открыто, то существует t'>1 такое, что $t'v \in W$. Положив $\alpha = \frac{1}{t}$, $\beta = t'$, $U = \frac{1}{t'}W$ и применив теорему 1, получим гомеоморфизм, обратный к искомому.

T е о р е м а $\ 2$. Bсякое топологическое векторное пространство X сильно локально однородно.

Доказательство. В силу следствия к лемме 1 достаточно доказать, что X слабо локально однородно. Пусть U — открытое множество этого пространства и $x \in U$. В силу теоремы K найдется такая сжимаемая окрестность V нуля, что $V + V + x \subset U$. Пусть $y \in V + x$. Существует такое $\varepsilon > 0$, что $I(o, \varepsilon(x-y)) \subset V$. Можно считать, что $x + \varepsilon(x-y) = o$ (если это не так, то произведем сдвиг).

Рассмотрим окрестность W нуля: W=V+I(o,x). По лемме K W сжимаема. Так как $y \equiv W$ и $y=\frac{1+\varepsilon}{\varepsilon}x$, го по следствию теоремы 1 найдется такой гомсоморфизм $h' \equiv H(X)$, что h'(x)=y и $h'|_{x \setminus W}=\mathrm{id}$. Так как $W=V+I(o,\varepsilon(x-y))+x\subset V+V+x\subset U$, то $h'|_{x \setminus U}=\mathrm{id}$.

В работе (2) доказана

Теорема Е (Eberhart). Бесконечномерный тихоновский куб сильно локально однороден.

2. Стабильные и бистабильные гомеоморфизмы.

Определение 4. Гомеоморфизм $f \equiv H(X)$ называется за к репленым, если он тождествен на некотором открытом множестве. Гомеоморфизм называется стабильным, если он представлен в виде конечной композиции закрепленных гомеоморфизмов. Гомеоморфизм называется бистабильным, если он представим в виде композиции двух закреплепных гомеоморфизмов.

Теорема 3. Пусть X — топологическое пространство. Если для любых трех открытых множеств U_1 , U_2 , U_3 и для любого гомеоморфизма $f \in H(X)$ найдутся такие три точки $a_i \in U_i$ и такой гомеоморфизм $h \in H(X)$, что $h(a_1) = a_2$ и h тождествен на некоторых окрестностях точек a_3 и $f(a_3)$, то

любой стабильный гомеоморфизм пространства X бистабилен.

Доказательство. Очевидно, достаточно доказать, что любой гомеоморфизм, являющийся композицией трех закрепленных гомеоморфизмов, бистабилен. Пусть $f=f_3f_2f_1$, где $f_1,f_2,f_3 \in H(X)$ и тождествениы на открытых множествах U_1, U_2, U_3 соответственно. Согласно условию, существуют точки $a_i \in U_i, i=1,2,3$, гомеоморфизм $h \in H(X)$ и открытое множество V такие, что $a_3 \cup f_2^{-1}(a_3) \subset V, h|_V = \mathrm{id}, h(a_1) = a_2$. Рассмотрим гомеоморфизмы $g_1 = h^{-1}f_2hf_1$ и $g_2 = f_3f_2h^{-1}f_2^{-1}h$. Легко проверяется, что g_1 тождествен на $h^{-1}(U_2) \cap U_4$, а g_2 — на $V \cap f_2 V \cap U_3$. Кроме того, $f = g_2g_4$.

Теорема 4. Пусть X — топологическое пространство, Y — открытое плотное в X множество, слабо локально однородное в индуцированной топологии, причем для любых двух точек b, $o \in y$ дополнение $Y \setminus (b \cup c)$

связно.

Тогда Х удовлетворяет условию теоремы 3.

Доказательство. Пусть U_1 , U_2 , U_3 открыты в X, а $f \in H(X)$. Выберем точки $a_i \in U_i$ так, что $f(a_3) \in Y$ и $a_i \neq f(a_3)$, $a_i \neq a_3$, i=1,2. Рассмотрим множество $A = \{a \in Y \mid \text{, существует такой } h \in H(X), \text{ что } h(a_1) = a$ и h тождествен на некоторых окрестностях точек a_3 и $f(a_3)\}$. Так же, как в лемме 1, докажем, что A открыто-замкнуто в $Y \setminus (a_3 \cup f(a_3))$. Так как $a_1 \in A$, то $A = Y \setminus (a_3 \cup f(a_3))$. Следовательно, $a_2 \in A$.

Следствие 1. Пусть X — топологическое векторное пространство или тихоновский куб (конечно- или бесконечномерный). Тогда любой стабиль-

ный гомеоморфизм пространства Х бистабилен.

Следствие 2. Пусть пространство X— открытое или канонически замкнутое множество топологического векторного пространства или тихоновского куба. Тогда любой стабильный гомеоморфизм пространства X бистабилен.

Замечание. Прямая линия не удовлетворяет условиям теорем З и 4. Однако легко проверяется, что любой гомеоморфизм связного подмножества прямой, не меняющий ориентацию (а, следовательно, любой стабильный гомеоморфизм), бистабилен.

В работах (1) и (4) доказаны следующие два утверждения.

Теорема A (Anderson). Любой гомеоморфизм гильбертова куба стабилен.

Теорема AW (Anderson, Wong). Любой гомеоморфизм бесконечномерного сепарабельного пространства Фреше стабилен.

Следствие. Любой гомеоморфизм гильбертова куба (бесконечномер-

ного сепарабельного пространства Фреше) бистабилен.

В заключение выражаю глубокую благодарность проф. Ю. М. Смирнову, под руководством которого была выполнена эта работа.

Московский государственный университет им. М. В. Ломоносова

Поступило 19 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. D. Anderson, Math. J., 14, № 3, 365 (1967). ² C. Eberhart, Proc. Am. Math. Soc., 19, № 1, 185 (1968). ³ V. L. Klee, Math. Ann., 14, № 4, 281 (1960). ⁴ Raymond J. T. Wong, Trans. Am. Math. Soc., 128, № 1, 148 (1967). ⁵ X. Шефер, Топологические векторные пространства, М., 1971.