УДК 513.831

MATEMATUKA

В. К. БЕЛЬНОВ

О МЕТРИЗАЦИИ АБЕЛЕВЫХ ГРУПП

(Представлено академиком П. С. Александровым 19 XII 1972)

Пусть G — абелева группа, которую можно представить в виде $G = \sum_{\alpha \in A} Z_q^{(\alpha)}$, где $Z_q^{(\alpha)} = Z_q$ — копия циклической группы Z_q для любого $\alpha \in A$ и $q \ge 2$ — фиксированное целое число. Пусть, далее, x_α — некоторая образующая группы $Z_q^{(\alpha)}$, $\alpha \in A$, и $X = \{0\} \bigcup_{\alpha \in A} \{x_\alpha\}$. Будем называть X базой группы G, а группу G будем называть абелевой группой со слоем Z_q и базой X. Если G — свободная абелева группа с базой X (1), то будем аналогично называть G абелевой группой со слоем G и базой G.

Теорема 1. Пусть X-метризуемое пространство и точка $x_0 \subseteq X$. Рассмотрим абелеву группу G с базой X и слоем Z_n , $n \ge 2$, нулевым эле-

ментом которой является точка $x_0 \subseteq X$.

Тогда на группе G существует такая метризуемая топология v, совместимая с групповой структурой G, что:

1) топология v индуцирует на множестве X его первоначальную топологию;

2) множество X является замкнутым подмножеством метризуемой

группы (G, v).
В работе $(^2)$ Р. Д. Андерсон и Дж. И. Кейслер доказывают следующее Утверждение. В n-мерном эвклидовом пространстве E^n существует такое подмножество K, что $\dim K = \dim K^\omega = n-1$ (здесь $K^\omega - n$ роизве-

Оение счетного числа экземпляров пространства K).

Используя этот результат, можно с помощью следующей теоремы строить для каждого целого $m \ge 0$ такую абелеву группу G со слоем Z пли

 \mathbb{Z}_n , где $n \ge 2$ — фиксированное целое число, что dim G = m.

Теорема 2. Пусть K — такое метризуемое сепарабельное пространство, что $\dim K = \dim K^{\circ} = m$, и пусть точка $x_0 \in K$. Рассмотрим абелеву группу G с базой K и слоем Z или Z_n , где $n \ge 2$, нулевым элементом которой является точка $x_0 \in K$.

Тогда на группе G существует такая метризуемая топология v, совме-

стимая с групповой структурой G, что:

1) топология v индуцирует на множестве K его первоначальную топологию;

2) множество K является замкнутым подмножеством группы (G, v);

3) dim (G, v) = m.

Теорема 3. Пусть X — локально-линейно-связное метризуемое пространство и точка $x_0 \in X$. Рассмотрим абелеву группу G с базой X и слоем Z или Z_n , где $n \ge 2$, нулевым элементом которой является точка $x_0 \in X$.

 $Tor\partial a$ на группе G существует такая метризуемая топология v, совме-

стимая с групповой структурой G, что:

1) топология v индуцирует на множестве X его первоначальную топологию;

2) множество X является замкнутым подмножеством метризуемой групны (G, v);

3) группа (G, v) локально-линейно-связна.

Следствие. Для каждого целого $n \ge 2$ существует метризуемая абелева группа G со слоем Z_n , которая локально-линейно-связна и линейносвязна.

Перейдем к построению метризуемых топологий на произвольных бесконечных абелевых группах.

T е о р е м а 4. Пусть G — абелева группа мошности $\mathbf{m} \geqslant \mathbf{x}_{0}$.

Tогда существует $2^{\mathfrak{m}}$ линейно упорядоченных множеств $M_s = \{\mu_s{}^{\alpha}, \alpha \in$ $\in (0, 1)$, $s \in S$, $|S| = 2^m$, метризуемых топологий на группе G, совместимых с ее групповой структурой и таких, что:

1) $\mu_s^{\alpha_1} < \mu_s^{\alpha_2}$, echu $0 < \alpha_1 < \alpha_2 < 1$, $s \in S$;

2) каковы бы ни были $\alpha_1, \alpha_2 \in (0, 1)$, топологии $\mu_{s_1}^{\alpha_1}$ и $\mu_{s_2}^{\alpha_2}$ несравнимы, ecau $s_1 \neq s_2$.

3) dim $(G, \mu_s^{\alpha}) = 0$ для любого $\alpha \in (0, 1)$ и любого $s \in S$.

Tеорема 5. Пусть G — абелева группа, $|G| \ge \mathfrak{c}$, и пусть n — неотрицательное целое число.

Тогда существует такое семейство $\{\mu_s\}$, $s \in S$, $|s| = 2\mathfrak{c}$, метризуемых топологий на группе G, совместимых c ее групповой структурой, что:

1) для любого $s \in S$ группа (G, μ_s) локально-сепарабельна; 2) для любого $s \in S$ dim $(G, \mu_s) = n$;

3) для любых $s_1, s_2 \in S_1, s_1 \neq s_2$, группы (G, μ_{s_1}) и (G, μ_{s_2}) не гомеоморфны.

Tеорема 6. Пусть G-абелева группа, и пусть $|G| \geqslant \mathfrak{c}$.

Tогда существует такое семейство $\{\mu_s\}$, $s \in S$, $|S| = 2^{\mathbb{C}}$, метризуемых топологий на группе G, совместимых c ее групповой структурой, что:

1) для любого $s \in S$ группа (G, μ_s) локально-сепарабельна; 2) для любого $s \in S$ группа (G, μ_s) локально-линейно-связна;

3) $\partial_{1} s_{1} = s_{1}, s_{2} \in S, s_{1} \neq s_{2}, \text{ группы } (G, \mu_{s_{1}}) u (G, \mu_{s_{2}})$ не гомео-

морфны.

Пусть G — абелева группа и μ — некоторая метризуемая топология на группе G, совместимая с ее групповой структурой. Будем обозначать через μG пополнение метризуемой группы (G, μ) (3).

Теорема 7. $\hat{\Pi}$ усть G- абелева группа, $G_0 \subseteq G-$ подгруппа без кру-

чения группы G и $|G_0| = \mathfrak{m} \geqslant \aleph_0$.

Tогда для любой абелевой метризуемой группы (H,μ) с $w(H,\mu) \leqslant \mathbf{m}$ существует такая метризуемая топология v на группе G, совместимая с ее групповой структурой, и такое топологически изоморфное вложение $\varphi \colon (H, \mu) \to vG$ группы (H, μ) в группу vG, что $\varphi(H) \cap G = \{0\}$.

Teopema 8. $\Pi ucrb G - abenesa pynna, G_0 \subseteq G - nodepynna pynnu G,$ которая является абелевой группой со слоем Z_a , $q \ge 2$, и базой X, и пусть $|X| = \mathfrak{m} \geqslant \aleph_0$

Тогда для любой абелевой метризуемой группы (Н, µ), для которой qH=0 и $w(H, \mu) \leq \mathbf{m}$, существует такая метризуемая топология ν на группе G, совместимая с ее групповой структурой, и такое топологически изоморфное вложение $\varphi\colon (H,\mu)\to vG$ группы (H,μ) в группу vG, что $\varphi(H)$ \cap $\cap G = \{0\}.$

Теорема 9. Пусть G- абелева группа, и пусть для некоторой возрастающей последовательности $2 \geqslant q_1 < q_2 < \ldots < q_i < \ldots$ целых чисел q_1 , q_2,\ldots,q_i,\ldots существует такая последовательность подгрупп G_i группы G_{\bullet}

1) для каждого $i=1, 2, \ldots,$ подгруппа G_i является абелевой группой со слоем Z_{q} ; и базой X_{i} ;

 $2) |X_1| \leqslant |X_2| \leqslant \ldots \leqslant |X_i| \leqslant \ldots$

 Π усть, далее, $|\bigcup_{i=1}^{n} X_i| = \mathfrak{m}$.

Тогда для любой абелевой метризуемой группы (H, μ) , для которой $w(H, \mu) \leq m$, существует такая метризуемая топология ν на группе G, совместимая с ее групповой структурой, и такое топологически изоморфное вложение φ : $(H, \mu) \to \nu G$ группы (H, μ) в группу νG , что $\varphi(H) \cap G = \{0\}$.

При доказательстве теорем 7-9 существенно используется следующее

утверждение, представляющее самостоятельный интерес:

Теорема 10. Пусть (G, μ) — абелева метризуемая группа, $G_0 \subseteq G$ — замкнутая подгруппа группы $G, \mu_0 = \mu | G \ u \ \phi_0$: $(G_0, \mu_0) \to (H_0, \nu_0)$ — непрерывный гомоморфизм группы (G_0, μ_0) на некоторую метризуемую группу (H_0, ν_0) . Пусть, далее, $G_1 = \ker \phi_0$, $H = G / G_1 \ u \ \phi$: $G \to H$ — естественный гомоморфизм.

Тогда на группе Н существует такая метризуемая топология у, совме-

стимая с ее групповой структурой, что:

1) если отождествить каноническим образом группу H_0 с подгруппой группы H, то $v_0 = v \big|_{H_0}$ и (H_0, v_0) является замкнутой подгруппой группы (H, v);

2) гомоморфизм φ : $(G, \mu) \to (H, \nu)$ непрерывен.

Московский государственный университет им. М. В. Ломоносова

Поступило 6 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. К. Бельнов, ДАН, **202**, № 4, 743 (1972). ² R. D. Anderson, J. E. Keisler, Proc. Am. Math. Soc., 48, № 4, 709 (1967). ³ М. И. Граев, УМН, 5, в. 2, 3 (1950).

