УДК 612.014.424

ФИЗИОЛОГИЯ

Член-корреспондент АН СССР А. И. РОЙТБАК, В. В. ФАНАРДЖЯН

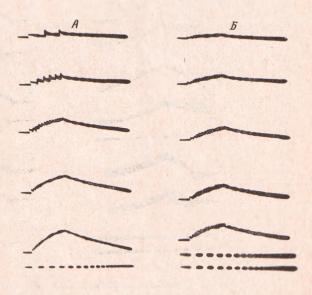
ВНУТРИКЛЕТОЧНЫЕ ПОТЕНЦИАЛЫ КОРКОВЫХ ГЛИАЛЬНЫХ КЛЕТОК ПРИ ЭЛЕКТРИЧЕСКОМ РАЗДРАЖЕНИИ КОРЫ

В коре больших полушарий встречаются клетки, обладающие высоким мембранным потепциалом, не дающие ни при каких условиях разряда имирисов; электрическое раздражение поверхности коры вызывает деполяризацию таких клеток, которая по конфигурации и длительности соответствует медленному отрицательному потенциалу на поверхности коры вокруг раздражающих электродов (3,5) и экстрацеллюлярному потенциалу в глубине коры (8). Электрические реакции этих клеток подобны реакциям глиальных клеток зрительного нерва амфибий в этвет на его раздражение (6), и это явилось одним из главных оснований рассматривать эти клетки как глиальные. В последнее время они были гистологически идентифицированы, с помощью инъекции в них краски, как клетки глии (7). Целью пашего исследования было уточнить зависимость глиальной деполяризации (г.д.) от параметров электрического раздражения поверхности коры и от

мембранного потенциала (м.п.) глиальной клетки.

Опыты производились на кошках под нембуталовым наркозом (60 мг/кг). Пульсация коры подавлялась заполнением трепанационного отверстия смесью вазелинового масла и воска. Раздражающими электродами служили две серебряные проволоки диаметром 0,2 мм с расстоянием между ними 40 µ. Электроды устанавливались на поверхность супрасильвиевой извилины; на расстоянии 1-1.5 мм от раздражающих электродов располагался отводящий серебряный макроэлектрод и на таком же расстоянии вводился, обычно после надреза мягкой мозговой оболочки, стеклянный микроэлектрод, заполненный 2,5 N раствором лимоннокислого калия или 3 M KCl, с сопротивлением порядка 15—30 Мом. Потенциалы усиливались усилителями постоянного тока и регистрировались посредством двухлучевого катодного осциллографа в режиме ждущей развертки — линейной или логарифмической. Раздражение производилось прямоугольными импульсами продолжительностью от 0,05 до 0,5 мсек. Мембранный потенциал отмечался по показаниям стрелочного прибора. Зарегистрированы электрические реакции 49 глиальных клеток; в ряде случаев удавалось вести внутриклеточную регистрацию более 30 мин.

У 12 клеток м.п. был выше 80 мв. Вначале, сразу после введения микроэлектрода в клетку, м.п. мог быть значительно меньшим, чем спустя некоторое время; например, в одном случае он составил 30 мв, затем в течение 10 мин. нарастал, достиг 90 мв и держался на этом уровне 10 мин., после чего за 7 мин. упал до 10 мв. Без раздражения коры не наблюдалось заметных спонтанных изменений м.п. глиальных клеток, в ответ же на


раздражение коры они отвечали деполяризацией.

При фиксированной продолжительности тетанического раздражения г.д. увеличивалась с увеличением его частоты, как это видно на рис. 1А: при 5 имп/сек она составляет 2 мв, при 10 5 мв, при 20 9 мв, при 30 11 мв, при 50 имп/сек 14 мв; в данном случае, как видно, зависимость между частотой раздражения и г.д. нелинейная. Итак, чем больше наносится стимулов в единицу времени, тем больше г.д. В связи с учащением раздражения время реполяризации удлиняется незначительно: в записях на рис. 1А де-

поляризационный «хвост» спадал наполовину при 10 имп/сек за 0,8 сек, при 20 имп/сек — за 1 сек. С учащением раздражения ответы на каждый стимул ослабевают, при частоте выше 50 в 1 сек. г.д. приобретает неколеблющийся характер. Изменение фазы раздражающих стимулов не изменяло характера ответа, но амплитуда г.д. могла несколько измениться.

При данной частоте раздражения с увеличением интенсивности стимулов увеличивается г.д., как это видно на рис. 1Б: при 20 в опа составляет 2 мв, при 30 5 мв, при 50 8 мв, при 70 9 мв, при 100 в 10 мв. Итак, чем больший объем коры раздражается, т. е. чем больше возбуждается нервных элементов, тем сильнее деполяризуется глиальная клетка. Мы видим, что учащение и усиление раздражения по результату идентичны;

Рис. 1. Зависимость глиальной деполяризации от частоты и интенсивности прямого электрического раздражения коры. Глиальная клетка на глубипе 2730 п. м.п. 65 мв. микроэлектрод введен на расстоянии 1 мм от раздражаемого пункта, усилитель постоянного тока. А интенсивность раздражения 100 в, продолжительность стимула 0,2 мсек.; частота свер-ху вниз: 5; 10; 20; 30; 50 имп/ /сек.; B — частота стимулов 20 в сек, продолжительность их 0,2 мсек., напряжение свер-ху вниз: 20; 30; 50; 70; 100 в. Время логарифмическое, отметки времени по 200 мсек.; калибровка напряжения 8 мврасстояние между двумя лучами внизу справа. Отклонеине вверх означает деполяризашию

в одном случае происходит преимущественно временная, в другом — преимущественно пространственная суммация влияний на мембране глиальной клетки.

Из сравнения осциллограмм A и B на рис. 2 видно, что если использовать усилитель переменного тока даже с большой постоянной времени, возникают искажения электрических ответов глиальной клетки; в ходе раздражения кривая достигает ложного плато, тогда как в действительпости продолжается нарастание г.д.; хвост деполяризации спадает значительпо быстрее. Таким образом, использование усилителя переменного тока может привести к неправильным заключениям. В этих записях при длительности тетанизации 0,6 сек. г.д. не достигает максимального значения, но, как видно, приближается к нему, составляя 20 мв. В опытах с раздражением таламического ядра VL при той же частоте раздражения (50 в 1 сек.) г.д. клетки в соматосенсорной области коры достигала максимума (18 мв) за 4-5 сек. раздражения (4). Следовательно, при прямом раздражении коры г.д. достигает пика значительно быстрее, чем при раздражении таламического ядра. На этих осциллограммах нижние кривые — потенциалы, отводимые от поверхности коры; на осциллограмме E ясно видно, что по прекращении раздражения г.д. и потенциал на поверхности, возвращаясь к исходному уровню, идут параллельно; во время же раздражения нарасгание г.д. и потенциала на новерхности протекаст по-разному. Но в случае, лриведенном на осциллограмме В, имеется больщое сходство г.д. и потенциала на поверхности коры как во время тетанизации, так и по прекращении ее, хотя видно, что потенциал на коре достигает максимума и переходит в плато, когда г.д. еще продолжает нарастать. На этой осциплограмме, где развертка очень медленная, видно, что «хвост» деполяризации длится более 3 сек.; по прекращении раздражения таламического ядра г.д. продолжается дольше (4). В опытах с нанесением повторных тетанусов с разными интервалами оказалось, что г.д. в ответ на второй тетанус значительно слабее при интервалах меньше 10 сек.

Зависимость г.д. от мембранного потенциала четко видна на осциллограммах Γ , \mathcal{L} и E (рис. 2): при м.п. 80 мв г.д. составляет 8,5 мв, при м.п. 60 мв 6 мв, при м.п. 45 мв 3,5 мв. Ответы переставали регистрироваться при снижении м.п. 20 мв. Когда на прямое раздражение коры возникала

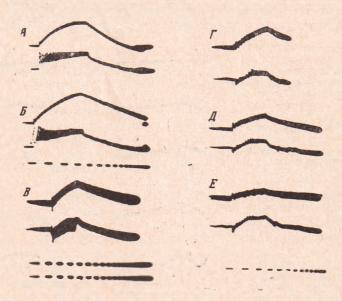


Рис. 2. Глиальная деполяризация при тетанизации коры; зависимость от мембранного потенциала. Потенциалы отводятся одповременно микроэлектродом внутриклеточно из глиальной клетки (верхние кривые) и макроэлектродом от поверхности коры (пижние кривые). A и B — та же клетка, что на рис. 1, м.п. 70 мв: А — микроэлектрод соединен с усилителем переменного тока с постоянной времени 1 сек., макроэлектрод — с усилителем постоянного тока, ответ на раздражение 100 в, 0,2 мсек., 50 имп/сек; E — то же, но микроэлектрод соединен с усилителем постоянного тока; B — другая кошка, глиальная клетка на глубине 1780 μ , м.п. 80 мв, ответ на раздражение 100 в, 0,3 мсек., 50 имп/сек, медленная развертка, усилители постоянного тока; Γ — то же при более быстрой развертке, м.п. 80 мв; \mathcal{I} — то же, м.п. 60 мв; E — то же, м.п. 45 мв. Время логарифмическое; отметки по 200 мсек.; калибровка напряжения — расстояние между двумя лучами, показана внизу слева: макроэлектрод — 1 мв; микроэлектрод — 8 мв для A и B, 5 мв для B — E. Отклонение веерх означает отрицательность макроэлектрода и деполяризацию при внутриклеточном отведении

г.д., то при выходе микроэлектрода из клетки при данном усилении переставал регистрироваться заметный потенциал; чтобы выйти из глиальной клетки требовалось изменить положение микроэлектрода по вертикали иногда на 30 µ и более; создавалось впечатление, что нанизанная на микроэлектрод глиальная клетка тянется некоторое расстояние вслед за ним. Г.д. переставала регистрироваться и после пропускания через микроэлектрод толчков электрического тока 10^{-7} а.

Результаты наших опытов свидетельствуют в пользу предположения о глиальном происхождении медленного отрицательного потенциала, возникающего на поверхности коры вокруг раздражаемого пункта (1, 3): этот потенциал и г.д. имеют сходную конфигурацию и временное течение, поро-

ги их совпадают, они одинаково относятся к учащению стимулов и к повторным раздражениям. Но решение этого вопроса требует дальнейших исследований.

Институт физиологии Академии наук ГрузССР Тбилиси Поступило 27 II 1973

Институт физиологии им. Л. А. Орбели Академии наук АрмССР Ереван

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Ройтбак, Журн. высш. нервн. деят., 13, в. 5, 859 (1963). ² А. И. Ройтбак, В кн. Современные проблемы физиологии и патологии нервной системы, М., 1965, стр. 68. ³ V. F. Castellucci, S. Goldring, Electroencephalogr. and Clin. Neurophysiol., 28, № 2, 109 (1970). ⁴ R. G. Grossman, L. Whiteside, T. L. Hampton, Brain Res., 14, № 2, 401 (1969). ⁵ Y. Karahashi, S. Goldring, Electroencephalogr. and Clin. Neurophysiol., 20, № 6, 600 (1966). ⁶ S. W. Kuffler, J. G. Nicholls, Erg. Physiol., 51, 1 (1966). ⁷ A. Lasansky, Ann. Rev. Physiol., 33, 241 (1971). ⁸ E. Sugaya, Y. Karahashi. Japan. J. Physiol., 21, № 2, 149 (1971).