УДК 541.49+546.657:546.666+535.34

ФИЗИЧЕСКАЯ ХИМИЯ

Академик АН УССР Н. С. ПОЛУЭКТОВ, В. Т. МИЩЕНКО, Р. С. ЛАУЭР, Е. А. ЖИХАРЕВА

ВЛИЯНИЕ МАССЫ ЛИГАНДОВ НА ИНТЕНСИВНОСТЬ СВЕРХЧУВСТВИТЕЛЬНЫХ ПЕРЕХОДОВ Nd³+ И Er³+ В РАСТВОРАХ КОМПЛЕКСОВ С 8-ОКСИХИНОЛИНОМ И ЕГО ДИГАЛОИДОПРОИЗВОДНЫМИ

Интенсивность полос поглощения понов лантаноидов, соответствующих сверхчувствительным переходам (с.ч.п.), при комплексообразовании зависит от рода лиганда (1) и возрастает при увеличении их числа в комплексе (2). В работе (3) было показано, что в растворах комплексов с β -дикетонами молярные коэффициенты погашения (ϵ) в максимумах полос поглощения, соответствующих с.ч.п., увеличиваются с увеличением молекулярной массы лиганда.

В настоящей работе была поставлена задача на примере комплексов с 8-оксихинолином (оксином) и его дигалондопроизводными — 5,7-дихлор-

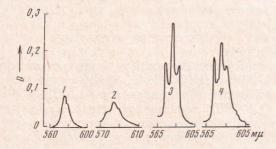
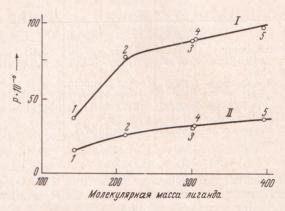


Рис. 1. Записи полосы поглощения с.ч.п. Nd^{3+} (переход ${}^4I_{^9/2} \rightarrow {}^{2,4}G_{^7/2}, {}^5/_2)$ в растворах: аква-иона (1) и комплексов в хлороформе с оксином (2), ДХО (3) и ХИО (4); $C_{\rm Me} = 0,0025~M; 0,0005~M; 0,001~M$ п 0,001 M, соответственно; $l=5~{\rm cm}$


8-оксихинолином (ДХО), 5,7-дибром-8-оксихинолином (ДБО), 5-хлор-7-иод-8-оксихинолином (ХИО) и 5,7-диюд-8-оксихинолином (ДИО) — выяснить, как изменяется интенсивность полос поглощения Nd^{3+} и Er^{3+} в комплексе в зависимости от массы лиганда. Для получения растворов комплексов водные растворы хлоридов неодима или эрбия экстрагировали при рН 8,6—8,9 0,005—0,02 M растворами комплексообразующих веществ в хлороформе (соотношение Me^{3+} : лиганд в опытах равнялось 1:8). В связи с тем, что экстракция понов лантаноидов происходит не полностью — экстрагируется 10-80% взятого количества элемента, содержание неодима и эрбия в экстрактах дополнительно определяли комплексонометрически после выпаривания аликвотной части раствора досуха, озоления остатка и растворения его в соляной кислоте. Сравнительные данные были получены при приведении всех растворов к одной концентрации $(0,0025\ M)$.

Спектры поглощения растворов комплексов регистрировали с помощью спектрофотометра СФ-14 в области нахождения полос с.ч.п. Nd^{3+} $^4I_{^0/2} \to$ $^4G_{^1/2}$ (18600—20400 см $^{-1}$), $^4I_{^0/2} \to$ 2 $^4G_{^1/2}$ (16000—18200 см $^{-1}$) и Er^{3+} $^4I_{^{13}/2} \to$ $^2H_{^{11}/2}$ (18500—19800 см $^{-1}$). К первому переходу Nd^{3+} примешиваются два других его перехода ($^4I_{^0/2} \to$ $^2K_{^{13}/2}$; $^4G_{^0/2}$), а к переходу Er^{3+} — один переход ($^4I_{^{15}/2} \to$ $^4S_{^3/2}$), однако вызываемые ими полосы яляются малоинтенсивными и существенно не влияют на интенсивность полос сверхчувствительных переходов (4). Поэтому в дальнейшем мы будем указывать только сверхчувствительные переходы.

Силы осцилляторов *P* рассчитывали, как это описано в (⁵), с введением поправки Лоренц — Лоренца на показатель преломления хлороформа.

Результаты опытов и их обсуждение. В растворах комплексов неодима и эрбия с оксином и его дигалоидопроизводными наблюдается значительное увеличение интенсивности полос поглощения, соответствующих с.ч.п., как это уже отмечалось в литературе для комплексов с ДХО (6, 7) и ДБО (8). Для растворов комплексов всех исследуемых нами дигалоидопроизводных характерно глубокое расщепление полосы

Рис. 2. Зависимость силы осцилляторов с.ч.п. Nd^{3+} (переход $^{4}I_{^{9}/_{2}} \rightarrow ^{2} \cdot ^{4}G_{^{7}/_{2}} \cdot ^{5}/_{2})$ (I) и Er^{3+} (переход $^{4}I_{^{5}/_{2}} \rightarrow ^{2}H_{^{11}/_{2}})$ (II) в хлороформных экстрактах комплексов от молекулярной массы лигандов: I — оксин; 2 — ДХО; 3 — ДБО; 4 — ХИО; 5 — ДИО

 ${
m Nd}^{3+}$ ${}^4I_{^9/2} \rightarrow {}^{2,4}G_{^7/2},{}^5/_2$ с образованием 3 пиков с максимумами поглощения при 574,5; 582,1 и 587,2 м μ (рис. 1). Для ${
m Er}^{3+}$ наблюдается меньшее расщепление, наиболее интенсивный максимум полосы находится при 520,5 м μ .

В табл. 1 представлены значения є п P, а также значения отношения $\varepsilon_{\text{компл}}/\varepsilon_{\text{аква}}$ и $P_{\text{компл}}/P_{\text{аква}}$ для более интенсивной полосы Nd^{3+} (${}^4I^{\circ}_{/_2} \to {}^{2,}{}^4G^{\scriptscriptstyle 7}_{/_2,}{}^5_{/_2}$) и исследуемой полосы Er^{3+} . Как следует из данных табл. 1, при переходе от оксина к его хлор-, бром- и иодопроизводным значениям

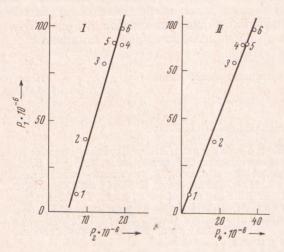


Рис. 3. Корреляционные графики зависимости P_1 полосы с.ч.п. Nd^{3+} (${}^4I_{9/2} \rightarrow {}^2A^*G_{7/2, \cdot}{}^5/_2$) от P_2 полосы Nd^{3+} (${}^4I_{9/2} \rightarrow {}^4G_{7/2}$) (I), а также P_3 полосы Nd^{3+} (${}^4I_{9/2} \rightarrow {}^2A^*G_{7/2, \cdot}{}^5/_2$) от P_4 полосы Er^{3+} (${}^4I_{15/2} \rightarrow {}^2H_{11/2}$) (II) для растворов аква-пона (I) и комплексов в хлороформе с оксином (I2), ДХО (I3), ДБО (I4), ХИО (I5), ДИО (I6)

 ϵ и P увеличиваются в такой же последовательности. Для 5-хлор-7-под-8-оксихинолина значения P близки к значениям P для комплексов c ДБО, однако молярный коэффициент ниже, чем для других дигалоидироизводных, что связано c относительно меньшей интенсивностью пика при 582,1 м μ (рис. 1).

Как видно из рис. 2, с увеличением молекулярной массы лигандов, образующих с понами лантанондов комплексы состава ML₃ (⁷⁻⁹), значения сил осцилляторов полос с.ч.п. возрастают для обоих элементов в наиболь-

Изменение є п P полос с.ч.п. Nd^{3+} и Er^{3+} при комплексообразовании с 8-оксихинолином и его дигалондопроизводными

Лиганд	$Nd^{3+}({}^{4}I_{9/2} \rightarrow {}^{8}, {}^{4}G_{7/2}, {}^{5/2})$				$\text{Er}^{3+}({}^{4}I_{9/2} \rightarrow {}^{2}H_{11/2})$			
	ε	^в компл вак в а	P-10-8	Р _{КОМПЛ} Раква	ε	ε _{KOMΠJI} ε _{akBa}	P-10-6	Р _{компл} Раква
Аква-ион 8-оксихинолин 5,7-дихлор-8-окси- хиполин	6,88 21,22 57,3	3,08 8,33	9,76 37,93 79,0	3,88 8,09	3,34 12,91 21,5	3,87 6,43	2,89 16,38 26,55	5,67 9,2
5,7-дибром-8-окси-	63,8	9,27	89,12	9,1	25,8	7,72	31,27	10,8
хиполин 5-Хлор-7-под-8-ок- сихинолин	46,32	6,73	89,86	9,21	25,5	7,63	32,38	11,2
5,7-дииод-8-оксихи-	65,72	9,55	97,1	9,96	28,1	8,41	36,69	12,7

шей степени при переходе от оксина к ДХО (\sim в 2 раза), а затем менее интенсивно. По силе воздействия на P с.ч.п. используемые лиганды располагаются в следующий ряд:

оксин < ДХО < ДБО < ХИО < ДИО.

Графики зависимости P одной полосы Nd^{3+} (${}^4P_{/_2} \to {}^2, {}^4G^7_{/_2}, {}^5_{/_2}$) от P другой полосы Nd^{3+} (${}^4P_{/_2} \to {}^4G^7_{/_2} \to {}^4G^7_{/_2}$) и значения P первой полосы Nd^{3+} от значений P полосы Er^{3+} (рис. 3) носят прямолинейный характер, что подтверждает ранее сделанный вывод (5) о пропорциональном влиянии поля изучаемых лигандов на 4f -электронную оболочку обоих элементов. Подобная же пропорциональность наблюдается между значениями молярных коэффициентов погашения в максимумах полос поглощения обоих элементов с той лишь разницей, что значения ε для комплексов с 5-хлор-7-под-8-оксихиполином находятся на графике ниже значений ε комплексов с другими дигалоидпроизводными оксина.

Лаборатории Института общей и неорганической химии Академии наук УССР Одесса Поступило 14 II 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. С. Полуэктов, Л. И. Кононенко, Спектрофотометрические методы определения индивидуальных редкоземельных элементов, Киев, 1968. ² Н. С. Полуэктов, Л. А. Алакаева, М. А. Тищенко, Журн. прикл. спектроскоп., 17, 819 (1972). ³ Л. И. Кононенко, М. А. Тищенко, В. Н. Дробязко, ЖАХ, 26, 729 (1971). ⁴ W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys., 42, 4412 (1968). ⁵ Н. С. Полуэктов, Л. И. Кононенко и др., ДАН, 206, 1395 (1972). ⁶ Т. Моеller, D. Е. Jackson, Anal. Chem., 22, 1393 (1950). ⁷ М. И. Громова, Т. И. Романцева, В. М. Пешкова, Вестн. Московск. унив., сер. хим., № 4, 57 (1964). ⁸ Т. И. Романцева, Автореф. кандидатской диссертации, МГУ, 1966. ⁹ Б. Б. Яцимирский и др., Химия комплексных соединений редкоземельных элементов, Киев, 1966.