УДК 541.6;547.1′28

ХИМИЯ

А. А. ЖДАНОВ, академик К. А. АНДРИАНОВ, А. П. МАЛЫХИН

СИНТЕЗ ЛИНЕЙНЫХ ПОЛИОРГАНОКАРБОСИЛОКСАНОВ С ОРГАНОЦИКЛОТЕТРАСИЛОКСАНОВЫМИ ФРАГМЕНТАМИ В ПОЛИМЕРНОЙ ЦЕПИ

Синтез линейных полиорганосилоксанов, содержащих в полимерной цепи органосилоксановые циклы, представляет собой трудную задачу. Метод гидролитической поликонденсации, обычно применяемый для синтеза полиорганосилоксанов, оказывается непригодным для построения циклолинейного полимера, так как в условиях реакции всегда может происходить раскрытие цикла и образование полимеров со сшитой структурой.

Для нас представляло интерес разработать такие методы синтеза полиорганосилоксанов, которые позволили бы сохранить циклические группировки в полимерной цепи. Для этой цели нами была использована реакция гидридного полиприсоединения, которая протекает в мягких условиях и не затрагивает циклических структур, вводимых в полимерную цепь. Синтез линейных полиорганокарбоксилоксанов с циклическими структурами в полимерной цепи осуществлялся нами по схеме:

$$\begin{bmatrix} (CH_3)_2 & CH_3 &$$

где n = 0; 1; 4; 5; 6; 10; 20; 27; 34; 57; 94; 150; 200.

Полимеры подобного строения интересны в том отношении, что они, имея в цепи циклические структуры, обладают высокой реакционной способностью. Так, например, эти полимеры способны легко образовывать

сшитые структуры при действии анионных катализаторов.

Исходный дивинилгексаметилциклотетрасилоксан был получен совместным гидролизом диметилдихлорсилана и метилвинилдихлорсилана. Несмотря на использование эффективных ректификационных колонок, а также аналитического хроматографа с препаративной приставкой, нам не удалось разделить изомерные 1,3- и 1,5-дивинилгексаметилциклотетрасилоксаны, которые могут образоваться при совместном гидролизе. Поэтому в полученных полимерах возможно также существование изомерных

По полуколичественной оценке с помощью спектров я.м.р. соотношение изомерных 1,3- и 1,5-циклических структур в синтезированных поли-

мерах составляет примерно 1:1.

Синтез полимеров осуществляли в атмосфере аргона при мольном соотношении исходных реагентов 1:1 в отсутствие растворителя или в инертном органическом растворителе (например, в толуоле) при $100-110^{\circ}$. Температура реакции была выбрана такой, чтобы в этих условиях не происходило раскрытия органосилоксановых циклов. В качестве катализатора была использована платинохлористоводородная кислота, которую добавляли в реакционную массу в два приема из расчета $1-1,5\cdot10^{-5}$ г $H_2PtCl_6\cdot6H_2O$ на 1 г исходной смеси. Половину всего количества катализатора добавляли перед началом реакции, а вторую половину — через 25-140 час. после начала нагревания.

Платинохлористоводородную кислоту вводили в виде 0,01 N раствора в тетрагидрофуране. Использование в качестве растворителя для $H_2PtCl_6 \cdot 6H_2O$ изопропилового спирта приводит к снижению относительной вязкости получаемых полимеров, по-видимому, из-за протекания побочной

реакции алкоксилирования:

$$-$$
Si-H+HO-C₃H₇ $-\rightarrow$ Si-O-C₃H₇+H₂↑

Проведение реакции в среде инертного органического растворителя (например, толуола) не оказывает существенного влияния на характеристическую вязкость полученного полимера. В присутствии растворителя для ее достижения требуется лишь более продолжительное нагревание реакционной массы.

Данным методом было синтезировано и охарактеризовано 13 ранее не описанных в литературе органоциклокарбосилоксанов, результаты элементарного анализа и физико-химические константы которых приведены в табл. 1. Полученные полимеры представляют собой вязкие — высоковязкие бесцветные, прозрачные жидкости, растворимые в ароматических угле-

водородах и низших простых и сложных эфирах.

В ряде синтезов было прослежено изменение содержания функциональных групп (Si—H по данным и.-к. спектроскопии) в процессе проведения реакции и характер нарастания удельной вязкости реакционной массы. Полученные данные представлены на рис. 1. Как видно, в зависимости от длины α,ω-дигидрополидиметилсилоксана через 10—20 час. нагревания реакционной массы происходит резкое уменьшение оптической плотности Si—H-связи, и ее дальнейшее изменение при помощи и.-к. спектроскопии не может быть прослежено. Однако реакция при этом еще далека от завершения, так как удельная вязкость 1% растворов полимеров в толуоле достигает своего максимального значения только через 50—160 час. нагревания. Из данных табл. 1 видно, что время, необходимое для достижения предельной удельной вязкости 1% растворов полимера в толуоле, существенно зависит от длины цепи α,ω-дигидрополидиметилсилоксана, использованного для получения полиорганоциклокарбоксилоксана. При получении полнорганоциклокарбоксилоксанов необходимо использовать исходные

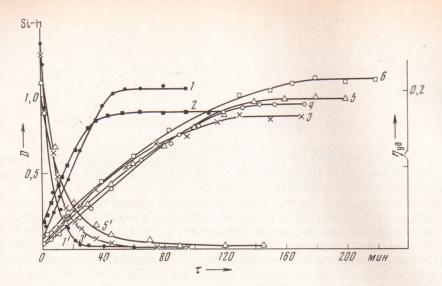


Рис. 1. Характер изменения оптической плотности Si — H-связи (1', 3', 5') и изменения удельной вязкости (1—6) в реакционной массе в процессе синтеза полиорганоциклокарбосилоксанов: $1-n=0,\ 2-1,\ 3-4,\ 4-6,\ 5-10,\ 6-n=27$

соединения высокой степени очистки и свежеприготовленные, в противном случае полимер получить не удается или он получается низкомолекулярным. Следы кислых или основных веществ на стенках реакционного сосуда ведут к быстрому нарастанию вязкости системы, при наличии в реакционной массе значительного количества (20—40% от исходного содержания) непрореагировавших функциональных групп. Дальнейшее нагревание реакционной массы при температуре синтеза ведет к ее переходу через 15—40 час. в неплавкое и нерастворимое состояние.

Анализ и.-к. спектров синтезированных полимеров показал, что в них отсутствуют полосы поглощения, имеющиеся в спектрах исходных соединений: при 2180—2120 см-1 полоса, характерная для валентных колебаний Si-H-связи (1, 2), при 1610-1590 см-1 - для валентных внеплоскостных колебаний несопряженной связи C=C (1, 2), при 3030-3020 см⁻¹ — для валентных колебаний С-Н в СН₂ = СН-группе и в области 3090-3070 см⁻¹, характерной для валентных антисимметричных колебаний $= \mathrm{CH}_2$ -группы в CH₂ = CH (1, 2). Кроме того, в и.-к. спектрах полученных соединений, в отличие от спектров исходных соединений, в области 2890-2870 см-1 появляется полоса (или плечо) поглощения, характерная для валентных симметричных колебаний С—H-связи в группе СH2 алкиленовых мостиков $\binom{1}{2}$, а полоса поглощения при 2920-2900 см $^{-1}$, характерная для валентных колебаний связи С-H в СН₃-группе, становится более интенсивной и смещается в область 2940-2920 см⁻¹, видимо, из-за наложения на нее антисимметричных валентных колебаний связи С—Н в СН2-группе алкиленового мостика.

Наряду с этим в и.-к. спектрах спитезированных полнорганоциклокар-босилоксанов сохраняются полосы поглощения, имевшиеся в спектрах исходных соединений: в области 1270-1260 см⁻¹ полоса, характерная для колебаний Si—CH₃-группы в области 2910 и 2970 см⁻¹ полосы, характерные для колебаний С—H-связи в CH₃-группе и широкая полоса поглощения в области 1100-1000 см⁻¹, распадающаяся на дублет с максимумами при 1060-1020 см⁻¹ и 1100-1070 см⁻¹, характерная для антисимметричных колебаний группировки Si—O—Si в полиорганосилоксанах (¹, ²). Исключение составляют соединения 1 и 2 (см. табл. 1), в и.-к. спектрах которых полоса поглощения Si—O—Si-группы имеет один максимум при 1090-1070 см⁻¹.

Таблица 1
Результаты элементного анализа и физико-химические константы полиорганоциклокарбосилоксанов общей формулы (1)

		Время добавления второй пор- ции катализатора, час.	Общее время на- гревания реак- ционной массы, час.	[n], дл/г	Мол. вес (свето- рассеянием)	Найдено, %				Вычислено, %		
N.N. H. H.						С	н	Si	врутто-формула	C	н	Sì
1	0	25	56	0,20	_	36,88 36,98	8,50 8,34	36,76 36,82	C ₁₄ H ₃₈ O ₅ Si ₆	36,96	8,42	37,04
2	1	25	65	0,18	75 000	36,03	8,20	36,79	C ₁₆ H ₁₄ O ₆ Si ₇	36,31	8,38	37,15
3	4	40	125	0,18	_	36,10 34,82 34,78	8,08 8,26 8,28	37,06 37,17 36,97	C ₂₂ H ₆₂ O ₉ Si ₁₎	35,15	8,31	37,36
4	5	50	135	0,17	-	34,49 34,71	8,19	37,12	C ₂₄ H ₆₈ O ₁₀ Si ₁₁	34,91	8,31	37,41
5	6	60	140	0,19	77 000	34,69	8,40 8,30	37,18 37,23	C ₂₆ H ₇₄ O ₁₁ Si ₁₂	34,69	8,30	37,45
6	10	80	160	0,19	_	34,78	8,41	37,38 37,45	C34H98O15Si16	34,13	8,26	37,55
7	20	80	180	0,21	_	34,36	8,31 8,20	37,74	C54H158O25Si26	33,57	8,23	37,68
8	27	90	180	0,24	120 000	33,39	8,12 8,23	37,55 37,59	C ₆₈ H ₂₀₀ O ₃₂ Si ₃₃	33,32	8,22	37,72
9	34	90	190	0,28		33,25 33,12	8,07	37,41 37,44	C ₈₂ H ₂₄₂ O ₃₉ Si ₄₀	33,08	8,21	37,75
10	57	100	200	0,37	-	33,29	8,00	37,88 37,48	C ₁₂₈ H ₃₈₀ O ₆₂ Si ₆₃	32,84	8,18	37,79
11	94	100	230	0,46	170 000	32,90 32,89	8,21 8,28	37,75 37,54	C ₂₎₂ H ₆₎₂ O ₉₉ Si ₁₀₀	32,67	8,17	37,82
12	150	120	260	0,85	_	32,54 32,75	$8,12 \\ 8,24$	37,65 37,92	C314H938O155Si156	32,57	8,17	37,84
13	200	140	270	0,97	471 000	32,64 32,69 32,49	8,41	37,73	C414H1238O215Si20.	32,48	8,16	37,86

Примечание. Для получения полимеров NN 1—3 использованы индивидуальные хроматографически чистые α , ω -дигидрополидиметилсилоксаны.

Изучение и.-к. спектров синтезированных полиорганопиклокарбоксилоксанов и предварительные опыты по длительному нагреванию смеси исходных изомеров гексаметилдивинилциклотетрасилоксана в условиях реакции полиприсоединения позволяют утверждать, что синтез полимеров осуществляется только за счет протекания реакции гидридного полиприсоединения с сохранением структур исходных соединений, а не за счет полимеризации циклического гексаметилдивинилциклотетрасилоксана. Подтверждением наличия органоциклотетрасилоксановых фрагментов в структуре синтезированных полиорганоциклокарбоксилоксанов может служить их переход в неплавкое, нерастворимое состояние, благодаря полимеризации органосилоксановых циклов, имеющихся в структуре полимера. При нагревании переосажденных полимеров при 100-110° в присутствии 0,001-0,01 вес. % катализаторов анионной полимеризации происходит резкое нарастание вязкости и образование геля. Изменяя длину алкиленсилоксанового мостика между органоциклотетрасилоксановыми фрагментами цепи полиорганоциклокарбосилоксана, можно таким образом изменять среднее расстояние между узлами сшивок, а следовательно, и свойства образующихся сшитых полимеров.

Институт элементоорганических соединений Академии наук СССР

Поступило 10 I 1973

Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. А. Чумаевский, Колебательные спектры элементоорганических соединений элементов IVБ и VБ групп, «Наука», 1967, стр. 49. ² Л. Беллами, Инфракрасные спектры сложных молекул, ИЛ, 1963, стр. 385.