УДК 517.11

MATEMATUKA

м. и. канович

О СЛОЖНОСТИ АППРОКСИМАЦИИ АРИФМЕТИЧЕСКИХ МНОЖЕСТВ

(Представлено академиком А. Н. Колмогоровым 11 XII 1972)

В работах ($^{1-4}$) исследовалась сложность «начальных отрезков» перечислимых множеств. Получены оценки сложности разрешимых множеств, совпадающих с данным перечислимым множеством на первых n числах. В данной статье рассматривается сложность аппроксимации некоторого арифметического множества множествами другого уровня в арифметической перархии. Используются понятия и терминология работ (5 , 6). Все суждения понимаются конструктивно (7 , 4).

1. Мы будем рассматривать следующий вариант формальной арифме-

тической системы.

Используется алфавит 0, () & $\bigvee \supset \neg \lor \exists a f$.

&, ∨, ⊃ будем называть юнкторами, V, ∃ — кванторами.

 Π е р е м е н н ы е — слова вида (a^n) , где n — натуральное число (n > 0).

Пусть u(n, x) — общерекурсивная функция такая, что для любой примитивно-рекурсивной функции φ от k аргументов существует такое натуральное число n, что для любых натуральных чисел x_1, x_2, \ldots, x_h

$$\varphi(x_1, x_2, \ldots, x_k) = u(n, p_1^{x_1} p_2^{x_2} \ldots p_k^{x_k}),$$

где p_i — i-е простое число.

Пусть g — неограниченная неубывающая общерекурсивная функция. О пределение (индуктивное) терма t и сложности терма $[t^{\lambda}]$.

1) 0 есть терм. $[0^{\lambda} = 1.$

2) Переменная есть терм. Сложность переменной равна 1.

3) Если t_1, \ldots, t_n — термы, n — натуральное число, то (f^n) $(t_1t_2 \ldots t_n)$ есть терм и $[(f^n)(t_1 \ldots t_k)^{\lambda} = g(n) + [t_1^{\lambda} + [t_2^{\lambda} + \ldots + [t_k^{\lambda*}]]$.

Определение значения постоянного терма.

1) Значение 0 есть 0.

2) Если t_1, \ldots, t_k — постоянные термы со значениями m_1, \ldots, m_k соответственно, n — натуральное число, то значение терма (f^n) (t_1, \ldots, t_k) есть число \bar{u} $(n, p_1^{m_1} p_2^{m_2} \ldots p_k^{m_k})$.

Определение формулы и сложности формулы.

1) Если t и s — термы, то (t=s) есть формула и $[(t=s)^{\lambda} = [t^{\lambda} + [s^{\lambda} + 1.$

2) Если A и B — формулы, δ — юнктор, то $(A \delta B)$ есть формула и $[(A \delta B)^{\lambda}] = [A^{\lambda}] + [B^{\lambda}] + 1$.

3) Если A — формула, то $\neg A$ есть формула и [$\neg A^{\lambda} = [A^{\lambda} + 1]$.

4) Если A — формула, X — переменная, Q — квантор, то QXA — формула и $[QXA^{\lambda} = [A^{\lambda} + 1.$

^{*} Число g(n) можно понимать как сложность n-й операции.

Пусть h — такое натуральное число, что $u(h, 2^x) = x + 1$. Каждому натуральному числу n сопоставим терм

$$(\underbrace{f^h)((f^h)(\dots((f^h)(0))\dots)).$$

который будем обозначать символом n. Очевидно, что значение терма n.

Пусть A — формула, X — переменная, n — натуральное число. Символом $F_n^{\ X}(A)$ будем обозначать результат подстановки вместо всех свободных вхождений переменной X в A терма \mathbf{n} .

Определение Ση- и П-формулы.

1) Всякая формула, не содержащая кванторов, называется Σ_0 -формулой (и Π_0 -формулой).

2) Если $A - \Sigma_n$ -формула и X — переменная, то VXA называется Π_{n+1} -

формулой.

3) Если $A = \Pi_n$ -формула и X— переменная, то $\exists XA$ называется Σ_{n+1} -формулой *.

Рассмотрение обобщенной «примитивно-рекурсивной» арифметики (см.

(6), § 48) связано со стремлением расширить класс Σ_0 -формул.

Равнозначность замкнутых формул A и B будем обозначать $A \sim B$.

2. Под м н о ж е с т в а м и понимаются однопараметрические формулы. Если множество $\mathfrak M$ определяется формулой A с параметром X и n — натуральное число, то формулу $F_n{}^X(A)$ будем обозначать $n \in \mathfrak M$. Если $A = \Sigma_n$ -формула, то множество $\mathfrak M$ будем называть Σ_n -м н о ж е с т в о м. Если $A = \Pi_n$ -формула, то $\mathfrak M$ будем называть Π_n -м н о ж е с т в о м.

3. Будем говорить, что множество \mathfrak{M} n-аппроксимируется формулой B с параметром X, если для любого натурального числа q, не превосходящего числа n, $F_q^X(B) \sim q \in \mathfrak{M}$.

Пусть имеется класс Δ-формул.

Функция β называется верхней оценкой Δ -аппроксимации множества \mathfrak{M} , если для любого натурального числа m квазиосуществима (1) Δ -формула B, m-аппроксимирующая множество \mathfrak{M} и такая, что

$$[B^{\lambda} \leq \beta(m).$$

Функция α называется нижней оценкой Δ -аппроксимации множества \mathfrak{M} , если для любого натурального числа m сложность любой Δ -формулы, m-аппроксимирующей множество \mathfrak{M} , не меньше, чем $\alpha(m)$.

4. Следующая теорема очевидна.

Теорема 1. Осуществимо такое число C, что функция β , определяемая равенством $\beta(m)=Cm$, является верхней оценкой Σ_0 -аппроксимации (и Π_0 -аппроксимации) любого множества \mathfrak{M} .

При аппроксимации Σ_n -множества «параллельными» Π_n -множествами

имеет место логари фмическая оценка.

Теорема 2. Осуществимы такие положительные числа C_0 и C_1 , что, каково бы ни было натуральное число n,

а) для любого Σ_n -множества $\mathfrak M$ функция eta, определяемая равенством $eta(m) = C_0 \log_2(m+1) + C_1[A^{\lambda},$

 $\frac{\partial e}{\partial n} A - \Sigma_n$ -формула, определяющая множество \mathfrak{M} , является верхней оценкой Π_n -аппроксимации множества \mathfrak{M} ;

в) для любого Π_n -множества $\mathfrak R$ функция β' , определяемая равенством

$$\beta'(m) = C_0 \log_2(m+1) + C_1[B^{\lambda},$$

 $^{\it 2de}\ B-\Pi_{\it n}$ -формула, определяющая множество \Re , является верхней оценкой $\Sigma_{\it n}$ -аппроксимации множества \Re .

^{*} Детальное рассмотрение конструктивной арифметической иерархии проведено в (8).

Теорема 3. Осуществимо такое положительное число C_2 , что для любого положительного целого числа п можно указать Σ_n -множество $\mathfrak R$ и Π_n -множество $\mathfrak R$ такие, что функция α , определяемая равенством

 $\alpha(m) = C_2 \log_2(m+1),$

является нижней оценкой $\Pi_{\it n}$ -аппроксимации множества ${\mathfrak M}$ и нижней

оценкой Σ_n -аппроксимации множества \mathfrak{N} .

Однако логарифмическая оценка имеет место только для «пары» $\Sigma_n - \Pi_n$. Для «пары» $\Sigma_n - \Sigma_{n-1}$ это не так. Более того, для любого $n \ge 1$ можно указать такое множество $\mathfrak M$ типа $\Sigma_n \cap \Pi_n$, что сложность аппроксимации его пропозициональными комбинациями Σ_{n-1} и Π_{n-1} -формул растет линейно.

Определение $(\Sigma_n \cup \Pi_n)^{\beta}$ -формулы.

1) Всякая Σ_n -формула считается $(\Sigma_n \cup \Pi_n)^{\beta}$ -формулой. 2) Всякая Π_n -формула считается $(\Sigma_n \cup \Pi_n)^{\beta}$ -формулой.

3) Если A и $B - (\Sigma_n \cup \Pi_n)^{\beta}$ -формулы, δ – юнктор, то $(A \delta B)$ считает-

ся $(\Sigma_n \cup \Pi_n)^{\beta}$ -формулой.

Теорема $\overline{4}$. Осуществимо такое положительное число C_3 , что для любого положительного целого числа n можно указать Σ_n -множество $\mathfrak M$ и эквивалентное ему Π_n -множество $\mathfrak N$ такие, что функция α , определяемая равенством

 $\alpha(m)=C_3m,$

является нижней оценкой $(\Sigma_{n-1} \cup \Pi_{n-1})^{\beta}$ -аппроксимации множества $\mathfrak{M}.$

Следствие очевидно.

Спедствие 1. Осуществимо такое положительное число C_3 , что для любого положительного целого числа п можно указать Σ_n -множество $\mathfrak M$ и Π_n -множество $\mathfrak R$ такие, что функция α , определяемая равенством

$$\alpha(m)=C_3m,$$

является нижней оценкой Σ_{n-1} -аппроксимации множества $\mathfrak M$ и нижней оценкой Π_{n-1} -аппроксимации множества $\mathfrak N$.

Теоремы 2 и 3 можно рассматривать как «сложностные» варианты

теорем об арифметической иерархии (см. (9)).

5. Полученным результатам можно дать следующую геометрическую интерпретацию.

Будем рассматривать арифметические множества как точки некоторого пространства (см. (9)). Пусть \mathfrak{M} — арифметическое множество.

Определим предикат 🕻 👚 над натуральными числами:

$$\mathbb{C}_{\mathfrak{M}}(i,r) \Rightarrow i \in \mathfrak{M}\&r = 1 \lor i \notin \mathfrak{M}\&r = 0.$$

Пусть ρ — рациональное число. Будем говорить, что множества \mathfrak{M} и \mathfrak{R} ρ - близки, если, каково бы ни было натуральное число n, для любых натуральных чисел $r_0, r_1, \ldots, r_n, q_0, q_1, \ldots, q_n$ таких, что

$$\forall j (j \leq n \supset \mathfrak{C}_{\mathfrak{M}}(j, r_j) \& \mathfrak{C}_{\mathfrak{N}}(j, q_j)),$$

выполняется неравенство

$$\sum_{j=0}^{\infty} \frac{|r_j - q_j|}{2^j} < \rho.$$

Спедствие 3. Осуществимы такие положительные числа C_0 и C_1 , что, каково бы ни было натуральное число n, для любого Σ_n -множества $\mathfrak M$ и любого рационального числа ρ такого, что $0 < \rho < 1/2$, квазиосуществимо Π_n -множество $\mathfrak R$, ρ -близкое κ множеству $\mathfrak M$ и сложности \ast не выше, чем $C_0 \log_2 \log_2 \left(1/\rho \right) + C_1 [A^{\lambda}] \ (A - \Sigma_n$ -формула, определяющая множество $\mathfrak M$).

Спедствие 4. Осуществимо такое положительное число C_2 , что для любого положительного числа п можно указать такое Σ_n -множество \mathfrak{M} , что, каково бы ни было рациональное число ρ такое, что $0 < \rho < 1$, сложность любого Π_n -множества, ρ -близкого κ множеству \mathfrak{M} , не меньше, чем $C_2 \log_2 \log_2 (1/\rho)$.

 $[\]overline{^*\Pi}$ од сложностью множества $\mathfrak R$ понимается сложность определяющей его Π_n -формулы.

Следствие 5. Осуществимо такое положительное число C, что, каково бы ни было положительное целое число n:

а) для любого Σ_n -множества $\mathfrak M$ и для любого рационального числа ρ такого, что $0<\rho<1$, квазиосуществимо Σ_0 -множество $\mathfrak N$, ρ -близкое κ мно-

жеству \mathfrak{M} и сложности не выше, чем $C \log_2(1/\rho)$;

б) можно указать такое Σ_n -множество \mathfrak{M} , что, каково бы ни было положительное рациональное число ρ , сложность любого Σ_{n-1} -множества, ρ -близкого к множеству \mathfrak{M} , больше, чем $\log_2\left(1/\rho\right)/C$.

Аналогичные результаты имеют место для Π_n -множеств.

6. Задача разрешения данного множества \mathfrak{M} ставится следующим образом: требуется построить алгорифм \mathfrak{R} , применимый ко всякому натуральному числу n и такой, что результат $\mathfrak{R}(n)$ содержит «информацию» о принадлежности числа n множеству \mathfrak{M} . Пусть имеется класс Δ -формул. Будем говорить, что алгорифм \mathfrak{R} Δ -разрешает множество \mathfrak{M} , если \mathfrak{R} перерабатывает всякое натуральное число n в замкнутую Δ -формулу, равнозначную $n \in \mathfrak{M}$. Соответствующая «ограниченная» задача ставится следующим образом. Будем говорить, что алгорифм \mathfrak{R} (m, Δ) -разрешает множество \mathfrak{M} , если \mathfrak{R} перерабатывает всякое натуральное число n, не превосходящее числа m, в замкнутую Δ -формулу, равнозначную $n \in \mathfrak{M}$.

Мы рассматриваем нормальные алгоритмы в некотором стандартном расширении алфавита O () & \vee \supset \urcorner \lor \exists a f. Под сложностью

алгоритма понимается длина его изображения (см. (1)).

Функцию β назовем верхией оценкой Δ -разрешения множества \mathfrak{M} , если для любого натурального числа m квазиосуществим алгорифм сложности не больше, чем $\beta(m)$, (m, Δ) -разрешающий множество \mathfrak{M} .

Функцию α назовем нижней оценкой Δ -разрешения множества \mathfrak{M} , если, каково бы ни было натуральное число m, сложность любого алгоритма, (m, Δ) -разрешающего множество \mathfrak{M} , больше, чем $\alpha(m)$.

Теорема 5. Осуществимы такие положительные числа C_0 и C_1 , что, каково бы ни было натуральное число n, для любого Σ_n -множества \mathfrak{M} функция β , определяемая равенством

 $\beta(m) = C_0 \log_2(m+1) + C_1[A^{\lambda}]$

 $z\partial e\ A-\phi$ ормула, определяющая множество \mathfrak{M} , является верхней оценкой

 Π_{n} -разрешения множества \mathfrak{M} .

Теорема 6. Осуществимо такое положительное число C_2 , что для любого положительного целого числа n можно указать такое Σ_n -множество \mathfrak{M} , что функция α , определяемая равенством $\alpha(m) = C_2 \log_2(m+1) - n$, является нижней оценкой Π_n -разрешения множества \mathfrak{M} .

Теоремы 5 и 6 сохраняются при замене Σ_n на Π_n , а Π_n на Σ_n .

Теорема 7. Осуществимо такое положительное число C_0 , что, каково бы ни было положительное целое число n:

a) функция eta', определяемая равенством $eta'(m)=C_{\mathfrak{0}}m$, является верх-

ней оценкой Σ_0 -разрешения любого Σ_n -множества;

б) можно указать такое Σ_n -множество $\mathfrak M$ и эквивалентное ему Π_n -множество $\mathfrak N$, что функция α' , определяемая равенством $\alpha'(m) = m/C_0 - n$, является нижней оценкой $(\Sigma_{n-1} \cup \Pi_{n-1})^{\beta}$ -разрешения множества $\mathfrak M$.

Теоремы 5-7 являются следствием теорем 2-4.

Автор глубоко благодарен А. А. Маркову за внимание и советы в период написания данной работы.

Тульский политехнический институт

Поступило 2 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Марков, Изв. АН СССР, сер. матем., **31**, 161 (1967). ² Я. М. Барзципь, ДАН, 182, № 6, 1249 (1968). ³ Н. В. Петри, ДАН, 186, № 1, 30 (1969). ⁴ М. И. Канович, ДАН, 186, № 5, 1008 (1969). ⁵ А. А. Марков, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 42 (1954). ⁶ С. К. Клини, Введение в математику, 1954. ⁷ Н. А. Шанин, Тр. Матем. инст. им. В. А. Стеклова АН СССР, **52**, 226 (1958). ⁸ М. М. Кипнис, Зап. научн. семинаров ЛОМИ АН СССР, **8**, 53 (1968). ⁹ Н. Rogers, jr, Theory of Recursive Functions and Effective Computability, 1967.