УДК 549.322.1

МИНЕРАЛОГИЯ

А. М. КАРПЕНКОВ, Н. С. РУДАШЕВСКИЙ

никелистые разновидности халькопирита

(Представлено академиком В. И. Смирновым 26 V 1972)

Природный халькопирит известен как минерал относительно постоянного химического состава, содержащий примеси в незначительных количествах $\binom{5}{1}$, $\binom{11}{1}$.

В сплошных халькопиритовых (и талнахитовых) рудах Октябрьского месторождения (Норильский рудный район) установлены три никелистые разновидности халькопирита, различающиеся по содержанию

никеля и по ряду физических свойств.

Халькопиритовые (и талнахитовые) руды занимают верхнюю или центральную часть плитобразной сульфидной залежи широтного простирания на северо-западе месторождения (1). Руды сложены халькопиритом, талнахитом, кубанитом и пентландитом, образующими аллотриоморфнозернистые срастания. Эту ассоциацию дополняет магнетит, валлерит, сфалерит, галенит, самородное серебро и соединения группы платины.

Через несколько часов после полировки халькопиритовых (и талнахитовых) руд зерна халькопирита и талнахита в различной мере покрываются побежалостью. При этом отчетливо выявляются решетчатые срастания талнахита (наиболее интенсивно окисленного) и ярко-желтого халькопирита без побежалости, а также индивидуализированные зерна последнего неправильной и прожилковидной форм (размером до 1—2 мм) в поле окисленного халькопирита.

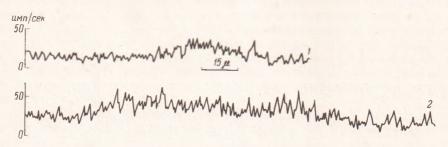


Рис. 1. Концентрационные кривые никеля никелистых халькопиритов. 1—
по зерну неокисляющегося халькопирита (повышенные содержания никеля) среди окисляющейся разновидности; 2— по решетчатому срастанию
талнахита с неокисляющимся халькопиритом (повышенные содержания никеля) в поле окисляющейся разновидности

Изучение химического состава (микрозонд MS-46 фирмы «Камека») разновидностей халькопирита, различающихся интенсивностью побежалости, показало, что они содержат различные количества никели (табл. 1). Выделяются следующие разновидности минерала: халькопирит слабо окисляющийся, с небольшой примесью никеля (0,15—0,30, среднее 0,23 вес.%); халькопирит с интенсивной побежалостью, несколько обогащенный никелем (0,32—0,56, среднее 0,42 вес.%); неокисляющийся светло-желтый халькопирит с максимальным содержанием никеля (0,62—1,19, среднее, 0,77 вес.%). Для сравнения в табл. 1 приведены

Химический состав разновидностей халькопирита и талнахита (вес %)

Минерал	Fe	Ni	Co	Cu	S	Сумма
	Пирроті	иновый	тип ру	7 д		
Халькопирит	30,60 30,90 31,42 31,00 31,20	0,10 0,02 0,00 0,02 0,01	0,04 0,04 0,09 0,04 0,04	32,25 34,33 33,70 33,70 34,50	35,15 34,79 34,14 34,90 35,00	98,14 100,08 99,35 99,60 100,75
Среднее	31,02	0,03	0,05	33,69	34,80	99,59
Халькопи	ритовый	(и тал	нахито	вый) ти	пруд	
Никелистый халькопирит Слабоокисляющийся	31,58 31,80 31,74 31,40	0,30 0,15 0,20 0,27	0,05 0,04 0,04 0,04	34,15 33,54 34,44 33,78	34,59 34,01 34,02 35,54	100,67 99,54 100,44 101,03
Среднее	31,63	0,23	0,04	33,98	34,54	100,42
Сильноокисляющийся	31,22 31,16 31,23 30,30	0,32 0,36 0,56 0,45	0,07 0,03 0,04 0,10	34,75 34,60 34,04 32,20	34,84 33,70 33,21 34,90	101,20 99,85 99,08 98,00
Среднее	30,98	0,42	0,06	33,90	34,16	99,52
Неокисляющийся	31,48 31,39 31,52 31,19 31,59 31,34 31,34 31,34	0,64 0,78 0,78 0,62 0,64 0,62 0,92 1,19	0,05 0,04 0,04 0,05 0,05 0,05 0,05 0,05	33,89 33,60 33,85 33,85 33,59 34,08 33,72 33,60	34,61 34,69 34,79 34,83 34,39 34,34 35,34	100,67 100,50 100,98 100,54 100,26 101,43 101,52
Среднее	31,40	0,77	0,05	33,77	34,91	100,90
Талпахит	29,54 30,37 30,07	0,85 0,68 0,93	0,05 0,03 0,05	37,03 36,72 35,86	34,43 32,84 33,39	101,90 100,64 100,30
Среднее	29,99	0,82	0,04	36,54	33,55	100,94

Примечание. Эталоны— чистые Fe, Ni, Co, Cu и химически проанализированный пирит (на S и Fe). Пересчет данных количественного анализа выполнен путем введения поправок на атомный номер (*), поглощение (*, *) и флуоресценцию (*з) с использованием таблиц массовых коэффициентов поглощения по К. Ф. Хейнричу и Р. Д. Девею (*, *)»).

химические составы халькопирита из руд пирротинового типа и талнахита из руд халькопиритового (и талнахитового) типа.

Качественный микрозондовый анализ показал, что в окисляющихся разновидностях халькопирита никель распределен равномерно. Концентрационная кривая никеля по зерну никелистого халькопирита без побежалости указывает на диффузионное распределение этого элемента: максимальные содержания в центре зерна с постепенным уменьшением концентрации примеси к краям (рис. 1, 1). Эта разновидность халькопирита и талнахит характеризуются близкими содержаниями никеля,

что подтверждается данными качественного микрозондового анализа

(рис. 1, 2).

Пересчет средних составов различных разновидностей халькопирита и талнахита (табл. 1) на кристаллохимические формулы дает следующие результаты:

Халькопирит из пирротиповых руд — $(Cu_{0,997}Ni_{0,001})_{0,978}Fe_{1,024}S_{2,000}$. Халькопирит слабо окисляющийся — $(Cu_{0,993}Ni_{0,007})_{1,000}Fe_{1,052}S_{2,000}$. Халькопирит сильно окисляющийся — $(Cu_{1,923}Ni_{0,013})_{1,015}Fe_{1,042}S_{2,000}$. Халькопирит неокисляющийся — $(Cu_{1,997}Ni_{0,024})_{1,001}Fe_{1,733}S_{2,000}$. — $(Cu_{1,099}Ni_{0,027})_{1,126}Fe_{1,727}S_{2,000}$. — $(Cu_{1,099}Ni_{0,027})_{1,126}Fe_{1,727}S_{2,000}$.

Обращает на себя внимание тот факт, что для никелистых разновидностей халькопирита, как и для талнахита, наблюдается избыток суммы металлов над серой в отличие от халькопирита из нирротинового типа

руд, формула которого близка к стехиометрической.

Для выяснения положения никеля в структуре халькопирита проведена статистическая обработка его анализов. Использованы наши данные и анализы, приведенные X. Паппунденом (12). Рассчитаны частные коэффициенты корреляции, характеризующие взаимосвязь между двумя признаками, и парциальные коэффициенты корреляции, позволяющие установить взаимосвязь между двумя признаками за вычетом третьего (2). Частные коэффициенты корреляции следующие: $r_{\text{FeN1}} = 0.51$, $r_{\text{CuN1}} = -0.34$ и $r_{\text{FeCu}} = 0.07$; парциальные: $c_{\text{U}}r_{\text{FeN1}} = 0.57$, $r_{\text{e}}r_{\text{CuN1}} = -0.44$ и $r_{\text{I}}r_{\text{FeCu}} = 0.30$. Полученные результаты позволяют высказать предположение, что никель в структуре халькопирита замещает медь, и чем больше железа в минерале, тем больше никеля входит в его решетку.

Физические свойства (отражение и твердость) различных разновидпостей халькопирита и талнахита приведены в табл. 2. Характерно, что минимальное отражение наблюдается у талнахита и сильноокисляющегося халькопирита, имеющих наибольший избыток металлов над серой. Средние значения твердости возрастают в ряду халькопирит — слабо окисляющийся халькопирит — сильно окисляющийся халькопирит — неокисляющийся халькопирит — талнахит (см. табл. 2). В этом же направлении возрастают и средние содержания никеля в минералах (см.

табл. 1).

Рентгенометрическое изучение разновидностей халькопирита выполнено на дифрактометре ЦРОН-I, $\mathrm{Cu}_{\kappa_\alpha}, V=2$ град/мин, диапазон счета 500 имп/сек, постоянная времени 40 сек. Никелистый халькопирит без побежалости исследован методом резинового шарика (3). Параметры

Таблица 2 Отражение и твердость разновидностей халькопирита и талнахита

Минерал	Отражение для различных длин волн, %							Твердость,	
	440 мµ	480 мџ	520 мµ	560 мµ	600 мµ	640 мµ	670 мџ	HΓ/MM²	
	Пир	роти	новы	й ти	пруд				
Халькопирит	31,5	40,8	47,8	49,8	50,7	50,0	49,6	191-200 (1955	
Халькопі	прито	вый	(и тал	пнахи	товы	ий) ти	пру	д	
Пикелистый халькопирит		1			71121		-		
Слабоокисляющийся	29,9	38,6	45,4	47,0	48,8	49,7	48,7	194—211 (202)	
Сильноокисляющийся Неокисляющийся	16,8	25,3	34,2	39,8 53,1	$\frac{41,7}{53,2}$	$\frac{43,7}{52,8}$	44,0	208—226 (213) 214—245 (227)	
Талнахит	26,0 18,3	$39,9 \\ 25,2$	48,7 33,0	36,0	39,4	40,5	51,3	226—251 (236)	
		-		No.				en i i maliferation	

Примечание. Отражение измерено на приборе ПООС-1 (этанол— металлический кремний). Твердость определена на установке ПМТ-3 при нагрузке 30 г.

элементарной ячейки всех разновидностей халькопирита близки друг другу: у халькопирита из пирротиновых руд $a = 5.28 \pm 0.01$, $c = 10.44 \pm$ ± 0.01 Å; у слабо окисляющегося никелистого халькопирита $a = 5.28 \pm 1.00$ ± 0.01 , $c = 10.39 \pm 0.01$ Å; у сильно окисляющегося никелистого халькопирита $a = 5.30 \pm 0.01$, $c = 10.43 \pm 0.01$ Å; у неокисляющегося никелистого халькопирита $a = 5.29 \pm 0.02$, $c = 10.45 \pm 0.02$ Å.

Изученные никелистые разновидности халькопирита и талнахит являются минералами халькопиритовых (и талнахитовых) руд, образование которых связывается с кристаллизацией халькопиритового и пентланиитового твердых растворов при температуре около 500° в системе Си-Fe — Ni — S (4). При понижении температуры происходил распад твердых растворов с выделением пентландита, талнахита, халькопирита и кубанита.

По мнению Г. Куллеруда и Г. Доннея (11), составы нестехиометрического халькопирита в природе не встречаются, так как при охлаждении вследствие кристаллизации состав минерала приближается к стехиоме-

трическому, который энергетически предпочтителен.

Наличие никелистых разновидностей халькопирита, имеющих избыток суммы металлов над серой, позволяет предположить, что они образовались в результате резкого охлаждения твердых растворов и представляют собой метастабильные образования. При этом никель не обособился полностью в виде пентландита, и часть его осталась в решетках халькопирита и талнахита. Расположение халькопиритовых (и талнахитовых) руд на периферии сульфидной залежи подтверждает наше предположение об условиях образования никелистых разновидностей халькопирита.

Авторы искренне благодарят Н. Н. Шишкина, В. А. Михайлову и Г. А. Митенкова за ценные советы при подготовке рукописи к печати.

Проектный и научно-исследовательский институт «Гипроникель»

Ленинград

24 V 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

1 Л. Л. Ваулин, Е. Н. Суханова, Разведка и охрана недр, № 4 (1970).
2 И. Г. Венецкий, Г. С. Кильдишев, Основы математической статистики, 1963.
3 А. Д. Генкин, Н. В. Королев, Геол. рудн. месторожд., № 5 (1964). 4 М. Н. Годлевский, А. П. Лихачев, В сборн. Геология и полезные ископаемые Норильского района, Норильск, 1971. 5 У. А. Дир, Р. А. Хауи, Дж. Зусман, Породообразующие минералы, 5, М., 1966. 6 Л. W. Colby, Absorption Correction Tables for Microprobe Analysis Effect of Critical Excitation Potential, Nat. Bur. Stand. Spec. Publ., № 944 (1965). 7 Л. W. Colby, In: The Electron Microprobe, N. Y., 1966. 8 R. D. Dewey, Handbook of X-Ray and Microprobe Data, London, 1969. 9 D. P. Duncamb, S. J. B. Reed, The Calculation of Stopping Power and Backscatter Effects in Electron Probe Microanalysis, Quantitative Electron Probe Microanalysis, Nat. Bur. Stand, Spec. Publ., № 298 (1968). 10 K. F. S. Heinrich, In: The Electron Microprobe, N. Y., 1966. 11 G. Kullerud, G. Donnay, In: Ann. Rep. Dir. Geophys. Lab., 1969—1970. 12 H. Papunen, Ann. Acad. Sci. Fenn., Ser. A, III, Geologia—Geographia, 1970. 13 D. B. Wittry, Fluorescence by Characteristic Radiation in Electron Probe Microanalysis, USCEC, Report 82-204, Univ. of Southern Calif. Engineering Center, 1962. Center, 1962.